Molecular tools for metalloprotease sub-proteome generation

Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N (2007)
Journal of Biotechnology 129(2): 316-328.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Molecular systems biology, the highly challenging post-genomic research area has many different facets like transcriptomics, proteomics, metabolomics, interactomics, modelling of cell cycles, etc. Among them, functional proteomics and interactomics represent exciting fields of research with high relevance towards biochemistry, medicinal chemistry, therapy, biotechnology and bioinformatics. The number of different proteins expressed by a cell under a set of certain conditions and the high dynamic range of these proteins together with different activation states require methods for sub-proteome generation on a mechanistic basis to reduce the amount of data. This can be achieved by application of tailor-made molecular tools that are based on inhibitors or, more generally, on protein ligands. Immobilised protein ligands proved to be suitable for the generation of sub-proteomes by affinity chromatography or by fishing using magnetic beads. Metalloproteases share a catalytically active metal ion in the active site. They can for example be addressed by hydroxamate type inhibitors like marimastat which are suitable for targeting active metalloproteases on a mechanistic basis aiming at the generation of an activity- and affinity-based sub-proteome. For such purposes, modified hydroxamate type inhibitors can be attached to a solid surface, e.g., chromatography material, magnetic beads, or a surface plasmon resonance sensor chip. The latter technique is a valuable tool for the optimisation of binding and elution conditions of biomolecules in affinity chromatography or on experiments using magnetic beads. Preliminary results are reported on the application of these probes in fishing experiments using magnetic beads. (c) 2007 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N. Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology. 2007;129(2):316-328.
Collet, M., Lenger, J., Jenssen, K., Plattner, H. P., & Sewald, N. (2007). Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology, 129(2), 316-328.
Collet, M., Lenger, J., Jenssen, K., Plattner, H. P., and Sewald, N. (2007). Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology 129, 316-328.
Collet, M., et al., 2007. Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology, 129(2), p 316-328.
M. Collet, et al., “Molecular tools for metalloprotease sub-proteome generation”, Journal of Biotechnology, vol. 129, 2007, pp. 316-328.
Collet, M., Lenger, J., Jenssen, K., Plattner, H.P., Sewald, N.: Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology. 129, 316-328 (2007).
Collet, Magalie, Lenger, Janina, Jenssen, Kai, Plattner, Hannes Patrik, and Sewald, Norbert. “Molecular tools for metalloprotease sub-proteome generation”. Journal of Biotechnology 129.2 (2007): 316-328.
This data publication is cited in the following publications:
This publication cites the following data publications:

5 Citations in Europe PMC

Data provided by Europe PubMed Central.

Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging.
Mitchell N, Kalber TL, Cooper MS, Sunassee K, Chalker SL, Shaw KP, Ordidge KL, Badar A, Janes SM, Blower PJ, Lythgoe MF, Hailes HC, Tabor AB., Biomaterials 34(4), 2013
PMID: 23131536
Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe.
Lenger J, Kaschani F, Lenz T, Dalhoff C, Villamor JG, Koster H, Sewald N, van der Hoorn RA., Bioorg. Med. Chem. 20(2), 2012
PMID: 21775155
Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human β-adrenoceptors.
Baker JG, Adams LA, Salchow K, Mistry SN, Middleton RJ, Hill SJ, Kellam B., J. Med. Chem. 54(19), 2011
PMID: 21870877
Survey of the year 2007 commercial optical biosensor literature.
Rich RL, Myszka DG., J. Mol. Recognit. 21(6), 2008
PMID: 18951413

28 References

Data provided by Europe PubMed Central.


Turkova, 1978
Design and therapeutic application of matrix metalloproteinase inhibitors.
Whittaker M, Floyd CD, Brown P, Gearing AJ., Chem. Rev. 99(9), 1999
PMID: 11749499
Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: an examination of the subsite pocket.
Yamamoto M, Tsujishita H, Hori N, Ohishi Y, Inoue S, Ikeda S, Okada Y., J. Med. Chem. 41(8), 1998
PMID: 9548812

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17207876
PubMed | Europe PMC

Search this title in

Google Scholar