Molecular tools for metalloprotease sub-proteome generation

Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N (2007)
Journal of Biotechnology 129(2): 316-328.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Molecular systems biology, the highly challenging post-genomic research area has many different facets like transcriptomics, proteomics, metabolomics, interactomics, modelling of cell cycles, etc. Among them, functional proteomics and interactomics represent exciting fields of research with high relevance towards biochemistry, medicinal chemistry, therapy, biotechnology and bioinformatics. The number of different proteins expressed by a cell under a set of certain conditions and the high dynamic range of these proteins together with different activation states require methods for sub-proteome generation on a mechanistic basis to reduce the amount of data. This can be achieved by application of tailor-made molecular tools that are based on inhibitors or, more generally, on protein ligands. Immobilised protein ligands proved to be suitable for the generation of sub-proteomes by affinity chromatography or by fishing using magnetic beads. Metalloproteases share a catalytically active metal ion in the active site. They can for example be addressed by hydroxamate type inhibitors like marimastat which are suitable for targeting active metalloproteases on a mechanistic basis aiming at the generation of an activity- and affinity-based sub-proteome. For such purposes, modified hydroxamate type inhibitors can be attached to a solid surface, e.g., chromatography material, magnetic beads, or a surface plasmon resonance sensor chip. The latter technique is a valuable tool for the optimisation of binding and elution conditions of biomolecules in affinity chromatography or on experiments using magnetic beads. Preliminary results are reported on the application of these probes in fishing experiments using magnetic beads. (c) 2007 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Journal of Biotechnology
Band
129
Zeitschriftennummer
2
Seite
316-328
ISSN
PUB-ID

Zitieren

Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N. Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology. 2007;129(2):316-328.
Collet, M., Lenger, J., Jenssen, K., Plattner, H. P., & Sewald, N. (2007). Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology, 129(2), 316-328. doi:10.1016/j.jbiotec.2006.12.005
Collet, M., Lenger, J., Jenssen, K., Plattner, H. P., and Sewald, N. (2007). Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology 129, 316-328.
Collet, M., et al., 2007. Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology, 129(2), p 316-328.
M. Collet, et al., “Molecular tools for metalloprotease sub-proteome generation”, Journal of Biotechnology, vol. 129, 2007, pp. 316-328.
Collet, M., Lenger, J., Jenssen, K., Plattner, H.P., Sewald, N.: Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology. 129, 316-328 (2007).
Collet, Magalie, Lenger, Janina, Jenssen, Kai, Plattner, Hannes Patrik, and Sewald, Norbert. “Molecular tools for metalloprotease sub-proteome generation”. Journal of Biotechnology 129.2 (2007): 316-328.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging.
Mitchell N, Kalber TL, Cooper MS, Sunassee K, Chalker SL, Shaw KP, Ordidge KL, Badar A, Janes SM, Blower PJ, Lythgoe MF, Hailes HC, Tabor AB., Biomaterials 34(4), 2013
PMID: 23131536
Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe.
Lenger J, Kaschani F, Lenz T, Dalhoff C, Villamor JG, Köster H, Sewald N, van der Hoorn RA., Bioorg Med Chem 20(2), 2012
PMID: 21775155
Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human β-adrenoceptors.
Baker JG, Adams LA, Salchow K, Mistry SN, Middleton RJ, Hill SJ, Kellam B., J Med Chem 54(19), 2011
PMID: 21870877
Survey of the year 2007 commercial optical biosensor literature.
Rich RL, Myszka DG., J Mol Recognit 21(6), 2008
PMID: 18951413

28 References

Daten bereitgestellt von Europe PubMed Central.

Chemical strategies for functional proteomics.
Adam GC, Sorensen EJ, Cravatt BF., Mol. Cell Proteomics 1(10), 2002
PMID: 12438561
Anwendung von 4-polystyryltriphenylmethylchlorid zur Synthese von Peptiden und Aminosäuren
Barlos, Liebigs Ann. Chem. 11(), 1988
Darstellung geschützter Peptid-Fragmente unter Einsatz substituierter Triphenylmethyl-Harze
Barlos, Tetrahedron Lett. 30(), 1989
Recent advances in matrix metalloprotease inhibitors
Beckett, Chem. Rev. 99(), 1996
New efficient strategy for the incorporation of (S)-isoserine into peptides
Burger, J. Org. Chem. 60(), 1995
Evaluation of kinase inhibitor selectivity by chemical proteomics.
Daub H, Godl K, Brehmer D, Klebl B, Muller G., Assay Drug Dev Technol 2(2), 2004
PMID: 15165517
Proteomics. Proteomics in genomeland.
Fields S., Science 291(5507), 2001
PMID: 11233445
Activity-based matrix metallo-protease enrichment using automated, inhibitor affinity extractions.
Freije JR, Klein T, Ooms JA, Franke JP, Bischoff R., J. Proteome Res. 5(5), 2006
PMID: 16674108
Affinity-based tagging of protein families with reversible inhibitors: a concept for functional proteomics.
Hagenstein MC, Mussgnug JH, Lotte K, Plessow R, Brockhinke A, Kruse O, Sewald N., Angew. Chem. Int. Ed. Engl. 42(45), 2003
PMID: 14639736
Chemical tools for activity-based proteomics.
Hagenstein MC, Sewald N., J. Biotechnol. 124(1), 2006
PMID: 16442651

AUTHOR UNKNOWN, 0
Matrix metalloproteinase inhibitors: a structure-activity study.
Levy DE, Lapierre F, Liang W, Ye W, Lange CW, Li X, Grobelny D, Casabonne M, Tyrrell D, Holme K, Nadzan A, Galardy RE., J. Med. Chem. 41(2), 1998
PMID: 9457244
Implementing surface plasmon resonance biosensors in drug discovery.
Myszka DG, Rich RL., Pharm. Sci. Technol. Today 3(9), 2000
PMID: 10996572
Dde—a selective primary amine protecting group: a facile solid-phase approach to polyamine conjugates
Nash, Tetrahedron Lett. 37(), 1996
Activity-based probes for the proteomic profiling of metalloproteases.
Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF., Proc. Natl. Acad. Sci. U.S.A. 101(27), 2004
PMID: 15220480
Microarray platform for profiling enzyme activities in complex proteomes.
Sieber SA, Mondala TS, Head SR, Cravatt BF., J. Am. Chem. Soc. 126(48), 2004
PMID: 15571375
Chemical strategies for activity-based proteomics
Speers, Chem. BioChem. 5(), 2004
Synthesis of hydrophilic and flexible linkers for peptide derivatization in solid phase.
Song A, Wang X, Zhang J, Marik J, Lebrilla CB, Lam KS., Bioorg. Med. Chem. Lett. 14(1), 2004
PMID: 14684320

Turkova, 1978
Design and therapeutic application of matrix metalloproteinase inhibitors.
Whittaker M, Floyd CD, Brown P, Gearing AJ., Chem. Rev. 99(9), 1999
PMID: 11749499
Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: an examination of the subsite pocket.
Yamamoto M, Tsujishita H, Hori N, Ohishi Y, Inoue S, Ikeda S, Okada Y., J. Med. Chem. 41(8), 1998
PMID: 9548812

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 17207876
PubMed | Europe PMC

Suchen in

Google Scholar