Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011)

Nottbohm CT, Turchanin A, Beyer A, Stosch R, Gölzhäuser A (2011)
Small 7(7): 833.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Carbon nanosheets are mechanically stable, free-standing two-dimensional materials with a thickness of 1 nm and well defined physical and chemical properties. They are made by radiation-induced cross-linking of aromatic self-assembled monolayers. Herein, a route is presented to the scalable fabrication of multilayer nanosheets with tunable electrical, optical, and chemical properties on insulating substrates. Stacks of up to five nanosheets with sizes of 1 cm(2) on oxidized silicon are studied. Their optical characteristics are investigated by visual inspection, optical microscopy, UV-vis reflection spectroscopy, and model calculations. Their chemical composition is studied by X-ray photoelectron spectroscopy. The multilayer samples are then annealed in an ultrahigh vacuum at various temperatures up to 1100 K. A subsequent investigation by Raman, X-ray photoelectron, and UV-vis reflection spectroscopy, as well as by electrical four-point probe measurements, demonstrates that the layered nanosheets transform into nanocrystalline graphene. This structural and chemical transformation is accompanied by changes in the optical properties and electrical conductivity and opens up a new path for the fabrication of ultrathin functional conductive coatings. Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Erscheinungsjahr
Zeitschriftentitel
Small
Band
7
Zeitschriftennummer
7
Seite
833
ISSN
PUB-ID

Zitieren

Nottbohm CT, Turchanin A, Beyer A, Stosch R, Gölzhäuser A. Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011). Small. 2011;7(7):833.
Nottbohm, C. T., Turchanin, A., Beyer, A., Stosch, R., & Gölzhäuser, A. (2011). Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011). Small, 7(7), 833. doi:10.1002/smll.201190020
Nottbohm, C. T., Turchanin, A., Beyer, A., Stosch, R., and Gölzhäuser, A. (2011). Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011). Small 7, 833.
Nottbohm, C.T., et al., 2011. Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011). Small, 7(7), p 833.
C.T. Nottbohm, et al., “Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011)”, Small, vol. 7, 2011, pp. 833.
Nottbohm, C.T., Turchanin, A., Beyer, A., Stosch, R., Gölzhäuser, A.: Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011). Small. 7, 833 (2011).
Nottbohm, Christoph T., Turchanin, Andrey, Beyer, André, Stosch, Rainer, and Gölzhäuser, Armin. “Mechanically Stacked 1-nm-Thick Carbon Nanosheets: Ultrathin Layered Materials with Tunable Optical, Chemical, and Electrical Properties (Small 7/2011)”. Small 7.7 (2011): 833.

17 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Formation of nanocrystalline graphene on germanium.
Yekani R, Rusak E, Riaz A, Felten A, Breitung B, Dehm S, Perera D, Rohrer J, Rockstuhl C, Krupke R., Nanoscale 10(25), 2018
PMID: 29916516
Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices.
Noever SJ, Eder M, Del Giudice F, Martin J, Werkmeister FX, Hallwig S, Fischer S, Seeck O, Weber NE, Liewald C, Keilmann F, Turchanin A, Nickel B., Adv Mater 29(26), 2017
PMID: 28480616
Synthesis, structure and applications of graphene-based 2D heterostructures.
Solís-Fernández P, Bissett M, Ago H., Chem Soc Rev 46(15), 2017
PMID: 28691726
Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingólfsson O, Gölzhäuser A., Beilstein J Nanotechnol 8(), 2017
PMID: 29259871
Towards an optimum design for thin film phase plates.
Rhinow D., Ultramicroscopy 160(), 2016
PMID: 26397752
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials.
Zheng Z, Zhang X, Neumann C, Emmrich D, Winter A, Vieker H, Liu W, Lensen M, Gölzhäuser A, Turchanin A., Nanoscale 7(32), 2015
PMID: 26203897
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
Carbon nanomembranes (CNMs) supported by polymer: mechanics and gas permeation.
Ai M, Shishatskiy S, Wind J, Zhang X, Nottbohm CT, Mellech N, Winter A, Vieker H, Qiu J, Dietz KJ, Gölzhäuser A, Beyer A., Adv Mater 26(21), 2014
PMID: 24535992
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Gölzhäuser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285
All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications.
Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A., Adv Mater 26(28), 2014
PMID: 24862387
Focused electron beam induced processing and the effect of substrate thickness revisited.
van Dorp WF, Beyer A, Mainka M, Gölzhäuser A, Hansen TW, Wagner JB, Hagen CW, De Hosson JT., Nanotechnology 24(34), 2013
PMID: 23899908
Square-micrometer-sized, free-standing organometallic sheets and their square-centimeter-sized multilayers on solid substrates.
Zheng Z, Ruiz-Vargas CS, Bauer T, Rossi A, Payamyar P, Schütz A, Stemmer A, Sakamoto J, Schlüter AD., Macromol Rapid Commun 34(21), 2013
PMID: 24115363
Binder-free and full electrical-addressing free-standing nanosheets with carbon nanotube fabrics for electrochemical applications.
Lee TI, Jeagal JP, Choi JH, Choi WJ, Lee MJ, Oh JY, Kim KB, Baik HK, Xia Y, Myoung JM., Adv Mater 23(40), 2011
PMID: 21913236

63 References

Daten bereitgestellt von Europe PubMed Central.

Electric field effect in atomically thin carbon films.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA., Science 306(5696), 2004
PMID: 15499015
The rise of graphene.
Geim AK, Novoselov KS., Nat Mater 6(3), 2007
PMID: 17330084
Two-dimensional polymers: just a dream of synthetic chemists?
Sakamoto J, van Heijst J, Lukin O, Schluter AD., Angew. Chem. Int. Ed. Engl. 48(6), 2009
PMID: 19130514
Synthesis of linked carbon monolayers: films, balloons, tubes, and pleated sheets.
Schultz MJ, Zhang X, Unarunotai S, Khang DY, Cao Q, Wang C, Lei C, MacLaren S, Soares JA, Petrov I, Moore JS, Rogers JA., Proc. Natl. Acad. Sci. U.S.A. 105(21), 2008
PMID: 18508969

Cheng, Nano Today 4(), 2009
Conjugated carbon monolayer membranes: methods for synthesis and integration.
Unarunotai S, Murata Y, Chialvo CE, Mason N, Petrov I, Nuzzo RG, Moore JS, Rogers JA., Adv. Mater. Weinheim 22(10), 2010
PMID: 20401931

AUTHOR UNKNOWN, 0

Kado, Adv. Mater. 17(), 2005

Decher, Science 277(), 1997
Formation and Structure of Self-Assembled Monolayers.
Ulman A., Chem. Rev. 96(4), 1996
PMID: 11848802
Self-assembled monolayers of thiolates on metals as a form of nanotechnology.
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011

Geyer, Appl. Phys. Lett. 75(), 1999
Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography.
Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Golzhauser A., Small 3(12), 2007
PMID: 17960749
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375

Küller, Appl. Phys. Lett. 82(), 2003

Eck, Adv. Mater. 17(), 2005

Turchanin, Appl. Phys. Lett. 90(), 2007

Nottbohm, Z. Phys. Chem. 222(), 2008

Beyer, J. Vac. Sci. Technol. B 28(), 2010
Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles.
Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hutten A, Rosner H, Eck W, Mayer J, Golzhauser A., Ultramicroscopy 108(9), 2008
PMID: 18406532

Turchanin, Adv. Mater. 21(), 2009
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Golzhauser A., Angew. Chem. Int. Ed. Engl. 49(45), 2010
PMID: 20886488
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Golzhauser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967

Nottbohm, J. Vac. Sci. Technol. B 27(), 2009

AUTHOR UNKNOWN, 0

Laibinis, J. Phys. Chem. 95(), 1991
Lifetime and screening of the C 1s photoemission in graphite.
Sette F, Wertheim GK, Ma Y, Meigs G, Modesti S, Chen CT., Phys. Rev., B Condens. Matter 41(14), 1990
PMID: 9993353

Jackson, Appl. Surf. Sci. 90(), 1995

Blyth, Appl. Surf. Sci. 167(), 2000

Tanuma, Surface and Interface Analysis 37(), 2005

AUTHOR UNKNOWN, 2000

Ferrari, Phys. Rev. B 64(), 2001
Rayleigh imaging of graphene and graphene layers.
Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov KS, Ferrari AC., Nano Lett. 7(9), 2007
PMID: 17713959

Blake, Appl. Phys. Lett. 91(), 2007
Graphene thickness determination using reflection and contrast spectroscopy.
Ni ZH, Wang HM, Kasim J, Fan HM, Yu T, Wu YH, Feng YP, Shen ZX., Nano Lett. 7(9), 2007
PMID: 17655269
The optical visibility of graphene: interference colors of ultrathin graphite on SiO(2).
Roddaro S, Pingue P, Piazza V, Pellegrini V, Beltram F., Nano Lett. 7(9), 2007
PMID: 17665963

Jung, Nano Lett. 7(), 2007

Gray, J. Appl. Phys. 104(), 2008
Graphene on insulating crystalline substrates.
Akcoltekin S, El Kharrazi M, Kohler B, Lorke A, Schleberger M., Nanotechnology 20(15), 2009
PMID: 19420549

Gaskell, Appl. Phys. Lett. 94(), 2009
Graphene: the new two-dimensional nanomaterial.
Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A., Angew. Chem. Int. Ed. Engl. 48(42), 2009
PMID: 19784976
Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces.
Biebricher A, Paul A, Tinnefeld P, Golzhauser A, Sauer M., J. Biotechnol. 112(1-2), 2004
PMID: 15288945

Turchanin, Adv. Mater. 20(), 2008

Stumpe, Macromolecular Chemistry and Physics 209(), 2008

Perkampus, 1992

Rajca, J. Am. Chem. Soc. 118(), 1996

Rajca, Angew. Chem. 109(), 1997

Papoular, Astronomy and Astrophysics 270(), 1993

Djurisic, J. Appl. Phys. 85(), 1999

Born, 1980

Lorenz, Ann. Phys. 11(), 1880

Lorentz, Ann. Phys. 9(), 1880

Köhler, 1998
Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.
Hellmich W, Regtmeier J, Duong TT, Ros R, Anselmetti D, Ros A., Langmuir 21(16), 2005
PMID: 16042494

Dobrowolski, 1994

Hecht, 2001

Sernelius, 2001

Palik, 1998

Plummer, 2000

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 21374802
PubMed | Europe PMC

Suchen in

Google Scholar