Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases

Lindner S, Seibold GM, Henrich A, Kramer R, Wendisch VF (2011)
Applied and Environmental microbiology 77(11): 3571-3581.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Phosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake in Corynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to either iolT1 or iolT2. IolT1 and IolT2 are low-affinity glucose permeases with K(s) values of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways for l-lysine production were tested. The l-lysine yield by C. glutamicum DM1729, a rationally engineered l-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Deltahpr, which, however, showed low production rates. The combined overexpression of iolT1 or iolT2 with ppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Deltahpr enabled l-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higher l-lysine yield.
Erscheinungsjahr
Zeitschriftentitel
Applied and Environmental microbiology
Band
77
Zeitschriftennummer
11
Seite
3571-3581
ISSN
PUB-ID

Zitieren

Lindner S, Seibold GM, Henrich A, Kramer R, Wendisch VF. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology. 2011;77(11):3571-3581.
Lindner, S., Seibold, G. M., Henrich, A., Kramer, R., & Wendisch, V. F. (2011). Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology, 77(11), 3571-3581. doi:10.1128/AEM.02713-10
Lindner, S., Seibold, G. M., Henrich, A., Kramer, R., and Wendisch, V. F. (2011). Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology 77, 3571-3581.
Lindner, S., et al., 2011. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology, 77(11), p 3571-3581.
S. Lindner, et al., “Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases”, Applied and Environmental microbiology, vol. 77, 2011, pp. 3571-3581.
Lindner, S., Seibold, G.M., Henrich, A., Kramer, R., Wendisch, V.F.: Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology. 77, 3571-3581 (2011).
Lindner, Steffen, Seibold, Gerd M., Henrich, Alexander, Kramer, Reinhard, and Wendisch, Volker F. “Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases”. Applied and Environmental microbiology 77.11 (2011): 3571-3581.

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K., Appl Microbiol Biotechnol 97(4), 2013
PMID: 22854894
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY., Nat Chem Biol 8(6), 2012
PMID: 22596205
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382

70 References

Daten bereitgestellt von Europe PubMed Central.

The global gene expression response of Escherichia coli to L-phenylalanine.
Polen T, Kramer M, Bongaerts J, Wubbolts M, Wendisch VF., J. Biotechnol. 115(3), 2005
PMID: 15639085
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli.
Ren C, Chen T, Zhang J, Liang L, Lin Z., Microb. Cell Fact. 8(), 2009
PMID: 20003468
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581

Sambrook J., Fritsch E., Maniatis T.., 1989
Amplification of the phosphoenol pyruvate carboxylase gene of to improve amino acid production
Sano K., Ito K., Miwa K., Nakamori S.., 1987
Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
Seibold GM, Wurst M, Eikmanns BJ., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202084
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2).
van Wezel GP, Mahr K, Konig M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F., Mol. Microbiol. 55(2), 2005
PMID: 15659175
Altered glucose transport and shikimate pathway product yields in E. coli.
Yi J, Draths KM, Li K, Frost JW., Biotechnol. Prog. 19(5), 2003
PMID: 14524706

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21478323
PubMed | Europe PMC

Suchen in

Google Scholar