Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases

Lindner S, Seibold GM, Henrich A, Kramer R, Wendisch VF (2011)
Applied and Environmental microbiology 77(11): 3571-3581.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
Phosphoenolpyruvate-dependent glucose phosphorylation via the phosphotransferase system (PTS) is the major path of glucose uptake in Corynebacterium glutamicum, but some growth from glucose is retained in the absence of the PTS. The growth defect of a deletion mutant lacking the general PTS component HPr in glucose medium could be overcome by suppressor mutations leading to the high expression of inositol utilization genes or by the addition of inositol to the growth medium if a glucokinase is overproduced simultaneously. PTS-independent glucose uptake was shown to require at least one of the inositol transporters IolT1 and IolT2 as a mutant lacking IolT1, IolT2, and the PTS component HPr could not grow with glucose as the sole carbon source. Efficient glucose utilization in the absence of the PTS necessitated the overexpression of a glucokinase gene in addition to either iolT1 or iolT2. IolT1 and IolT2 are low-affinity glucose permeases with K(s) values of 2.8 and 1.9 mM, respectively. As glucose uptake and phosphorylation via the PTS differs from glucose uptake via IolT1 or IolT2 and phosphorylation via glucokinase by the requirement for phosphoenolpyruvate, the roles of the two pathways for l-lysine production were tested. The l-lysine yield by C. glutamicum DM1729, a rationally engineered l-lysine-producing strain, was lower than that by its PTS-deficient derivate DM1729Deltahpr, which, however, showed low production rates. The combined overexpression of iolT1 or iolT2 with ppgK, the gene for PolyP/ATP-dependent glucokinase, in DM1729Deltahpr enabled l-lysine production as fast as that by the parent strain DM1729 but with 10 to 20% higher l-lysine yield.
Erscheinungsjahr
Zeitschriftentitel
Applied and Environmental microbiology
Band
77
Zeitschriftennummer
11
Seite
3571-3581
ISSN
PUB-ID

Zitieren

Lindner S, Seibold GM, Henrich A, Kramer R, Wendisch VF. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology. 2011;77(11):3571-3581.
Lindner, S., Seibold, G. M., Henrich, A., Kramer, R., & Wendisch, V. F. (2011). Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology, 77(11), 3571-3581. doi:10.1128/AEM.02713-10
Lindner, S., Seibold, G. M., Henrich, A., Kramer, R., and Wendisch, V. F. (2011). Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology 77, 3571-3581.
Lindner, S., et al., 2011. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology, 77(11), p 3571-3581.
S. Lindner, et al., “Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases”, Applied and Environmental microbiology, vol. 77, 2011, pp. 3571-3581.
Lindner, S., Seibold, G.M., Henrich, A., Kramer, R., Wendisch, V.F.: Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Applied and Environmental microbiology. 77, 3571-3581 (2011).
Lindner, Steffen, Seibold, Gerd M., Henrich, Alexander, Kramer, Reinhard, and Wendisch, Volker F. “Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases”. Applied and Environmental microbiology 77.11 (2011): 3571-3581.

37 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum.
Zhao N, Qian L, Luo G, Zheng S., Appl Microbiol Biotechnol (), 2018
PMID: 30218378
Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities.
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, Wiechert W, Oldiges M., Biotechnol Bioeng 114(3), 2017
PMID: 27641904
Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives.
Li Y, Wei H, Wang T, Xu Q, Zhang C, Fan X, Ma Q, Chen N, Xie X., Bioresour Technol 245(pt b), 2017
PMID: 28579173
Systems metabolic engineering strategies for the production of amino acids.
Ma Q, Zhang Q, Xu Q, Zhang C, Li Y, Fan X, Xie X, Chen N., Synth Syst Biotechnol 2(2), 2017
PMID: 29062965
Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.
Gu Y, Deng J, Liu Y, Li J, Shin HD, Du G, Chen J, Liu L., Biotechnol J 12(10), 2017
PMID: 28731580
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction.
Aslan S, Noor E, Bar-Even A., Biochem J 474(23), 2017
PMID: 29146872
Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid.
Pérez-García F, Peters-Wendisch P, Wendisch VF., Appl Microbiol Biotechnol 100(18), 2016
PMID: 27345060
Identification of a Novel N-Acetylmuramic Acid Transporter in Tannerella forsythia.
Ruscitto A, Hottmann I, Stafford GP, Schäffer C, Mayer C, Sharma A., J Bacteriol 198(22), 2016
PMID: 27601356
A third glucose uptake bypass in Corynebacterium glutamicum ATCC 31833.
Ikeda M, Noguchi N, Ohshita M, Senoo A, Mitsuhashi S, Takeno S., Appl Microbiol Biotechnol 99(6), 2015
PMID: 25549619
Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
Zhang C, Zhang J, Kang Z, Du G, Chen J., J Ind Microbiol Biotechnol 42(5), 2015
PMID: 25665502
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum.
Eggeling L, Bott M., Appl Microbiol Biotechnol 99(8), 2015
PMID: 25761623
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Krämer R, Wendisch VF, Seibold GM., Appl Microbiol Biotechnol 98(12), 2014
PMID: 24668244
Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, Wan H, Ouyang P., J Ind Microbiol Biotechnol 41(8), 2014
PMID: 24859809
Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Krämer R, Wendisch VF, Seibold GM, Marin K., Appl Microbiol Biotechnol 97(4), 2013
PMID: 22854894
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.
Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM., Appl Environ Microbiol 79(8), 2013
PMID: 23396334
Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum.
Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM., J Bacteriol 195(11), 2013
PMID: 23543710
Proteome response of Corynebacterium glutamicum to high concentration of industrially relevant C₄ and C₅ dicarboxylic acids.
Vasco-Cárdenas MF, Baños S, Ramos A, Martín JF, Barreiro C., J Proteomics 85(), 2013
PMID: 23624027
Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum (D)-lactate productivity under oxygen deprivation.
Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H., Appl Microbiol Biotechnol 97(15), 2013
PMID: 23712891
Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY., Nat Chem Biol 8(6), 2012
PMID: 22596205
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl Microbiol Biotechnol 92(5), 2011
PMID: 21796382

70 References

Daten bereitgestellt von Europe PubMed Central.

Taxonomical studies on glutamic acid producing bacteria
Abe S., Takayarna K., Kinoshita S.., 1967
Regulation of carbon metabolism in
Arndt A., Eikmanns B.., 2008
Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli.
Balderas-Hernandez VE, Sabido-Ramos A, Silva P, Cabrera-Valladares N, Hernandez-Chavez G, Baez-Viveros JL, Martinez A, Bolivar F, Gosset G., Microb. Cell Fact. 8(), 2009
PMID: 19341482
Myo-inositol facilitators IolT1 and IolT2 enhance D-mannitol formation from D-fructose in Corynebacterium glutamicum.
Baumchen C, Krings E, Bringer S, Eggeling L, Sahm H., FEMS Microbiol. Lett. 290(2), 2008
PMID: 19054080
Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum.
Becker J, Klopprogge C, Wittmann C., Microb. Cell Fact. 7(), 2008
PMID: 18339202
Phosphoenolpyruvate availability and the biosynthesis of shikimic acid.
Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW., Biotechnol. Prog. 19(3), 2003
PMID: 12790643
Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli.
Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE., Biotechnol. Prog. 13(6), 1997
PMID: 9413135
Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of
Dominguez H., Cocaign-Bousquet M., Lindley N.., 1997
Experiments
Eggeling L., Reyes O.., 2005
Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.
Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F., Microb. Cell Fact. 9(), 2010
PMID: 20385022
Pathway engineering for the production of aromatic compounds in Escherichia coli.
Flores N, Xiao J, Berry A, Bolivar F, Valle F., Nat. Biotechnol. 14(5), 1996
PMID: 9630954
A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in
Gosset G., Yong-Xiao J., Berry A.., 1996
Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism.
Gourdon P, Baucher MF, Lindley ND, Guyonvarch A., Appl. Environ. Microbiol. 66(7), 2000
PMID: 10877795
Osmotic stress, glucose transport capacity and consequences for glutamate overproduction in Corynebacterium glutamicum.
Gourdon P, Raherimandimby M, Dominguez H, Cocaign-Bousquet M, Lindley ND., J. Biotechnol. 104(1-3), 2003
PMID: 12948631
Techniques for transformation of
Hanahan D.., 1985
Expression of galP and glk in a Escherichia coli PTS mutant restores glucose transport and increases glycolytic flux to fermentation products.
Hernandez-Montalvo V, Martinez A, Hernandez-Chavez G, Bolivar F, Valle F, Gosset G., Biotechnol. Bioeng. 83(6), 2003
PMID: 12889033
Ins and outs of glucose transport systems in eubacteria.
Jahreis K, Pimentel-Schmitt EF, Bruckner R, Titgemeyer F., FEMS Microbiol. Rev. 32(6), 2008
PMID: 18647176
Characterization of phosphoenolpyruvate carboxykinase from
Jetten M., Sinskey A.., 1993
-lysine production
Kelle R., Hermann T., Bathe B.., 2005
-Glutamate production
Kimura E.., 2005
Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity.
Krause FS, Henrich A, Blombach B, Kramer R, Eikmanns BJ, Seibold GM., Appl. Environ. Microbiol. 76(1), 2009
PMID: 19880641
Characterization of myo-inositol utilization by Corynebacterium glutamicum: the stimulon, identification of transporters, and influence on L-lysine formation.
Krings E, Krumbach K, Bathe B, Kelle R, Wendisch VF, Sahm H, Eggeling L., J. Bacteriol. 188(23), 2006
PMID: 16997948
Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum.
Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF., Appl. Microbiol. Biotechnol. 87(2), 2010
PMID: 20379711
Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032.
Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK., FEMS Microbiol. Lett. 244(2), 2005
PMID: 15766777
Phosphoenolpyruvate: sugar phosphotransferase systems and sugar metabolism in
Mori M., Shiio I.., 1987
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H., Arch. Microbiol. 182(5), 2004
PMID: 15375646
Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression.
Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, Jankovic I., J. Bacteriol. 188(4), 2006
PMID: 16452407
Corynebacterium glutamicum: a dissection of the PTS.
Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 3(3), 2001
PMID: 11361073
Metabolic and physiological studies of Corynebacterium glutamicum mutants.
Park SM, Sinskey AJ, Stephanopoulos G., Biotechnol. Bioeng. 55(6), 1997
PMID: 18636597
Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum.
Park SY, Kim HK, Yoo SK, Oh TK, Lee JK., FEMS Microbiol. Lett. 188(2), 2000
PMID: 10913707
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
C3-carboxylation as an anaplerotic reaction in phosphoenolpyruvate carboxylase-deficient Corynebacterium glutamicum.
Peters-Wendisch PG, Wendisch VF, de Graaf AA, Eikmanns BJ, Sahm H., Arch. Microbiol. 165(6), 1996
PMID: 8661932
Pyruvate carboxylase as an anaplerotic enzyme in
Peters-Wendisch P., Wendisch V., Paul S., Eikmanns B., Sahm H.., 1997
Phosphoenolpyruvate carboxylase in is dispensable for growth and lysine production
Peters-Wendisch P., Eikmanns B., Thierbach G., Bachmann B., Sahm H.., 1993
Identification of a glucose permease from Mycobacterium smegmatis mc2 155.
Pimentel-Schmitt EF, Jahreis K, Eddy MP, Amon J, Burkovski A, Titgemeyer F., J. Mol. Microbiol. Biotechnol. 16(3-4), 2008
PMID: 18311074
The global gene expression response of Escherichia coli to L-phenylalanine.
Polen T, Kramer M, Bongaerts J, Wubbolts M, Wendisch VF., J. Biotechnol. 115(3), 2004
PMID: 15639085
Characterization of citrate utilization in Corynebacterium glutamicum by transcriptome and proteome analysis.
Polen T, Schluesener D, Poetsch A, Bott M, Wendisch VF., FEMS Microbiol. Lett. 273(1), 2007
PMID: 17559405
An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli.
Ren C, Chen T, Zhang J, Liang L, Lin Z., Microb. Cell Fact. 8(), 2009
PMID: 20003468
Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production.
Riedel C, Rittmann D, Dangel P, Mockel B, Petersen S, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(4), 2001
PMID: 11565516
Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.
Rittmann D, Lindner SN, Wendisch VF., Appl. Environ. Microbiol. 74(20), 2008
PMID: 18757581

Sambrook J., Fritsch E., Maniatis T.., 1989
Amplification of the phosphoenol pyruvate carboxylase gene of to improve amino acid production
Sano K., Ito K., Miwa K., Nakamori S.., 1987
Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
Seibold GM, Wurst M, Eikmanns BJ., Microbiology (Reading, Engl.) 155(Pt 2), 2009
PMID: 19202084
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505
GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2).
van Wezel GP, Mahr K, Konig M, Traag BA, Pimentel-Schmitt EF, Willimek A, Titgemeyer F., Mol. Microbiol. 55(2), 2005
PMID: 15659175
Altered glucose transport and shikimate pathway product yields in E. coli.
Yi J, Draths KM, Li K, Frost JW., Biotechnol. Prog. 19(5), 2003
PMID: 14524706

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21478323
PubMed | Europe PMC

Suchen in

Google Scholar