Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network

Golldack D, Luking I, Yang O (2011)
Plant Cell Reports 30(8): 1383-1391.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
Understanding the responses of plants to the major environmental stressors drought and salt is an important topic for the biotechnological application of functional mechanisms of stress adaptation. Here, we review recent discoveries on regulatory systems that link sensing and signaling of these environmental cues focusing on the integrative function of transcription activators. Key components that control and modulate stress adaptive pathways include transcription factors (TFs) ranging from bZIP, AP2/ERF, and MYB proteins to general TFs. Recent studies indicate that molecular dynamics as specific homodimerizations and heterodimerizations as well as modular flexibility and posttranslational modifications determine the functional specificity of TFs in environmental adaptation. Function of central regulators as NAC, WRKY, and zinc finger proteins may be modulated by mechanisms as small RNA (miRNA)-mediated posttranscriptional silencing and reactive oxygen species signaling. In addition to the key function of hub factors of stress tolerance within hierarchical regulatory networks, epigenetic processes as DNA methylation and posttranslational modifications of histones highly influence the efficiency of stress-induced gene expression. Comprehensive elucidation of dynamic coordination of drought and salt responsive TFs in interacting pathways and their specific integration in the cellular network of stress adaptation will provide new opportunities for the engineering of plant tolerance to these environmental stressors.
Erscheinungsjahr
Zeitschriftentitel
Plant Cell Reports
Band
30
Zeitschriftennummer
8
Seite
1383-1391
ISSN
eISSN
PUB-ID

Zitieren

Golldack D, Luking I, Yang O. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports. 2011;30(8):1383-1391.
Golldack, D., Luking, I., & Yang, O. (2011). Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30(8), 1383-1391. doi:10.1007/s00299-011-1068-0
Golldack, D., Luking, I., and Yang, O. (2011). Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports 30, 1383-1391.
Golldack, D., Luking, I., & Yang, O., 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports, 30(8), p 1383-1391.
D. Golldack, I. Luking, and O. Yang, “Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network”, Plant Cell Reports, vol. 30, 2011, pp. 1383-1391.
Golldack, D., Luking, I., Yang, O.: Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports. 30, 1383-1391 (2011).
Golldack, Dortje, Luking, Ines, and Yang, Oksoon. “Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network”. Plant Cell Reports 30.8 (2011): 1383-1391.

114 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Systems biology-based approaches toward understanding drought tolerance in food crops.
Jogaiah S, Govind SR, Tran LS., Crit Rev Biotechnol 33(1), 2013
PMID: 22364373
BrRZFP1 a Brassica rapa C3HC4-type RING zinc finger protein involved in cold, salt and dehydration stress.
Jung YJ, Lee IH, Nou IS, Lee KD, Rashotte AM, Kang KK., Plant Biol (Stuttg) 15(2), 2013
PMID: 22726580
Effects of drought on the microtranscriptome of field-grown sugarcane plants.
Gentile A, Ferreira TH, Mattos RS, Dias LI, Hoshino AA, Carneiro MS, Souza GM, Calsa T, Nogueira RM, Endres L, Menossi M., Planta 237(3), 2013
PMID: 23129215
Abscisic acid-dependent regulation of small rubber particle protein gene expression in Taraxacum brevicorniculatum is mediated by TbbZIP1.
Fricke J, Hillebrand A, Twyman RM, Prüfer D, Schulze Gronover C., Plant Cell Physiol 54(4), 2013
PMID: 23303876
Plant extracellular ATP signalling: new insight from proteomics.
Chivasa S, Slabas AR., Mol Biosyst 8(2), 2012
PMID: 21979580
Potentials toward genetic engineering of drought-tolerant soybean.
Thao NP, Tran LS., Crit Rev Biotechnol 32(4), 2012
PMID: 22181694
AP2/ERF Transcription Factor in Rice: Genome-Wide Canvas and Syntenic Relationships between Monocots and Eudicots.
Rashid M, Guangyuan H, Guangxiao Y, Hussain J, Xu Y., Evol Bioinform Online 8(), 2012
PMID: 22807623
Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection.
Guimarães PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB, Togawa R, Leal-Bertioli SC, Araujo AC, Moretzsohn MC, Bertioli DJ., BMC Genomics 13(), 2012
PMID: 22888963
A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.).
Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H., Plant Mol Biol 80(3), 2012
PMID: 22930448
Comparative transcriptome analysis of two olive cultivars in response to NaCl-stress.
Bazakos C, Manioudaki ME, Therios I, Voyiatzis D, Kafetzopoulos D, Awada T, Kalaitzis P., PLoS One 7(8), 2012
PMID: 22952621
A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis.
Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X., J Exp Bot 63(16), 2012
PMID: 23048128
microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.).
Ferreira TH, Gentile A, Vilela RD, Costa GG, Dias LI, Endres L, Menossi M., PLoS One 7(10), 2012
PMID: 23071617
Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes.
Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R., BMC Plant Biol 11(), 2011
PMID: 21923928

66 References

Daten bereitgestellt von Europe PubMed Central.

Breeding technologies to increase crop production in a changing world.
Tester M, Langridge P., Science 327(5967), 2010
PMID: 20150489
Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.
Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K., Plant Cell 16(9), 2004
PMID: 15319476
Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis.
Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K., Plant J. 49(1), 2007
PMID: 17233795

V, Plant Cell Environ 27(), 2003
Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development.
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schutze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Droge-Laser W., Plant Mol. Biol. 69(1-2), 2009
PMID: 18841482
Drought, ozone, ABA and ethylene: new insights from cell to plant to community.
Wilkinson S, Davies WJ., Plant Cell Environ. 33(4), 2010
PMID: 19843256

AUTHOR UNKNOWN, 0
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki K, Shinozaki K., Trends Plant Sci. 10(2), 2005
PMID: 15708346
Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis.
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K., Planta 229(5), 2009
PMID: 19225807
AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K., Plant J. 61(4), 2010
PMID: 19947981
Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants.
Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY., Plant Biotechnol. J. 6(5), 2008
PMID: 18384508
A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis.
Zhu J, Lee BH, Dellinger M, Cui X, Zhang C, Wu S, Nothnagel EA, Zhu JK., Plant J. 63(1), 2010
PMID: 20409003
The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses.
Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H., Gene 457(1-2), 2010
PMID: 20193749

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21476089
PubMed | Europe PMC

Suchen in

Google Scholar