A value for cephoidal NTU-games

Rosenmüller J (2007) Working Papers. Institute of Mathematical Economics; 388.
Bielefeld: Universität Bielefeld.

Download
OA
Diskussionspapier | Veröffentlicht | Englisch
Abstract / Bemerkung
A cephoid is an algebraic ("Minkowski") sum of finitely many prisms in R^n. A cephoidal game is an NTU game the feasible sets of which are cephoids. We provide a version of the Shapley NTU value for such games based on the bargaining solution of Maschler-Perles.
Erscheinungsjahr
Band
388
ISSN
PUB-ID

Zitieren

Rosenmüller J. A value for cephoidal NTU-games. Working Papers. Institute of Mathematical Economics. Vol 388. Bielefeld: Universität Bielefeld; 2007.
Rosenmüller, J. (2007). A value for cephoidal NTU-games (Working Papers. Institute of Mathematical Economics, 388). Bielefeld: Universität Bielefeld.
Rosenmüller, J. (2007). A value for cephoidal NTU-games. Working Papers. Institute of Mathematical Economics, 388, Bielefeld: Universität Bielefeld.
Rosenmüller, J., 2007. A value for cephoidal NTU-games, Working Papers. Institute of Mathematical Economics, no.388, Bielefeld: Universität Bielefeld.
J. Rosenmüller, A value for cephoidal NTU-games, Working Papers. Institute of Mathematical Economics, vol. 388, Bielefeld: Universität Bielefeld, 2007.
Rosenmüller, J.: A value for cephoidal NTU-games. Working Papers. Institute of Mathematical Economics, 388. Universität Bielefeld, Bielefeld (2007).
Rosenmüller, Joachim. A value for cephoidal NTU-games. Bielefeld: Universität Bielefeld, 2007. Working Papers. Institute of Mathematical Economics. 388.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-01-19T15:52:59Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar