A value for cephoidal NTU-games

Rosenmüller J (2007) Working Papers. Institute of Mathematical Economics; 388.
Bielefeld: Universität Bielefeld.

Download
OA
Working Paper | Published | English
Abstract
A cephoid is an algebraic ("Minkowski") sum of finitely many prisms in R^n. A cephoidal game is an NTU game the feasible sets of which are cephoids. We provide a version of the Shapley NTU value for such games based on the bargaining solution of Maschler-Perles.
Publishing Year
ISSN
PUB-ID

Cite this

Rosenmüller J. A value for cephoidal NTU-games. Working Papers. Institute of Mathematical Economics. Vol 388. Bielefeld: Universität Bielefeld; 2007.
Rosenmüller, J. (2007). A value for cephoidal NTU-games (Working Papers. Institute of Mathematical Economics, 388). Bielefeld: Universität Bielefeld.
Rosenmüller, J. (2007). A value for cephoidal NTU-games. Working Papers. Institute of Mathematical Economics, 388, Bielefeld: Universität Bielefeld.
Rosenmüller, J., 2007. A value for cephoidal NTU-games, Working Papers. Institute of Mathematical Economics, no.388, Bielefeld: Universität Bielefeld.
J. Rosenmüller, A value for cephoidal NTU-games, Working Papers. Institute of Mathematical Economics, vol. 388, Bielefeld: Universität Bielefeld, 2007.
Rosenmüller, J.: A value for cephoidal NTU-games. Working Papers. Institute of Mathematical Economics, 388. Universität Bielefeld, Bielefeld (2007).
Rosenmüller, Joachim. A value for cephoidal NTU-games. Bielefeld: Universität Bielefeld, 2007. Working Papers. Institute of Mathematical Economics. 388.
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2016-01-19T15:52:59Z

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar