Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus

Tovar-Mendez A, Matamoros MA, Bustos-Sanmamed P, Dietz K-J, Javier Cejudo F, Rouhier N, Sato S, Tabata S, Becana M (2011)
PLANT PHYSIOLOGY 156(3): 1535-1547.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ;
Abstract
Peroxiredoxins (Prxs), thioredoxins (Trxs), and NADPH-thioredoxin reductases (NTRs) constitute central elements of the thioldisulfide redox regulatory network of plant cells. This study provides a comprehensive survey of this network in the model legume Lotus japonicus. The aims were to identify and characterize these gene families and to assess whether the NTR-Trx systems are operative in nodules. Quantitative reverse transcription-polymerase chain reaction and immunological and proteomic approaches were used for expression profiling. We identified seven Prx, 14 Trx, and three NTR functional genes. The PrxQ1 gene was found to be transcribed in two alternative spliced variants and to be expressed at high levels in leaves, stems, petals, pods, and seeds and at low levels in roots and nodules. The 1CPrx gene showed very high expression in the seed embryos and low expression in vegetative tissues and was induced by nitric oxide and cytokinins. In sharp contrast, cytokinins down-regulated all other Prx genes, except PrxQ1, in roots and nodules, but only 2CPrxA and PrxQ1 in leaves. Gene-specific changes in Prx expression were also observed in response to ethylene, abscisic acid, and auxins. Nodules contain significant mRNA and protein amounts of cytosolic PrxIIB, Trxh1, and NTRA and of plastidic NTRC. Likewise, they express cytosolic Trxh3, Trxh4, Trxh8, and Trxh9, mitochondrial PrxIIF and Trxo, and plastidic Trxm2, Trxm4, and ferredoxin-Trx reductase. These findings reveal a complex regulation of Prxs that is dependent on the isoform, tissue, and signaling molecule and support that redox NTR-Trx systems are functional in the cytosol, mitochondria, and plastids of nodules.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Tovar-Mendez A, Matamoros MA, Bustos-Sanmamed P, et al. Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY. 2011;156(3):1535-1547.
Tovar-Mendez, A., Matamoros, M. A., Bustos-Sanmamed, P., Dietz, K. - J., Javier Cejudo, F., Rouhier, N., Sato, S., et al. (2011). Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY, 156(3), 1535-1547.
Tovar-Mendez, A., Matamoros, M. A., Bustos-Sanmamed, P., Dietz, K. - J., Javier Cejudo, F., Rouhier, N., Sato, S., Tabata, S., and Becana, M. (2011). Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY 156, 1535-1547.
Tovar-Mendez, A., et al., 2011. Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY, 156(3), p 1535-1547.
A. Tovar-Mendez, et al., “Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus”, PLANT PHYSIOLOGY, vol. 156, 2011, pp. 1535-1547.
Tovar-Mendez, A., Matamoros, M.A., Bustos-Sanmamed, P., Dietz, K.-J., Javier Cejudo, F., Rouhier, N., Sato, S., Tabata, S., Becana, M.: Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus. PLANT PHYSIOLOGY. 156, 1535-1547 (2011).
Tovar-Mendez, Alejandro, Matamoros, Manuel A., Bustos-Sanmamed, Pilar, Dietz, Karl-Josef, Javier Cejudo, Francisco, Rouhier, Nicolas, Sato, Shusei, Tabata, Satoshi, and Becana, Manuel. “Peroxiredoxins and NADPH-Dependent Thioredoxin Systems in the Model Legume Lotus japonicus”. PLANT PHYSIOLOGY 156.3 (2011): 1535-1547.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Function of glutathione peroxidases in legume root nodules.
Matamoros MA, Saiz A, Penuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz KJ, Becana M., J. Exp. Bot. 66(10), 2015
PMID: 25740929
Mitochondria are an early target of oxidative modifications in senescing legume nodules.
Matamoros MA, Fernandez-Garcia N, Wienkoop S, Loscos J, Saiz A, Becana M., New Phytol. 197(3), 2013
PMID: 23206179
Cellular Stress Following Water Deprivation in the Model Legume Lotus japonicus.
Betti M, Perez-Delgado C, Garcia-Calderon M, Diaz P, Monza J, Marquez AJ., Cells 1(4), 2012
PMID: 24710544
Gene expression in the developing aleurone and starchy endosperm of wheat.
Gillies SA, Futardo A, Henry RJ., Plant Biotechnol. J. 10(6), 2012
PMID: 22672716

70 References

Data provided by Europe PubMed Central.

Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process.
Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH., New Phytol. 165(3), 2005
PMID: 15720680
AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana.
Reichheld JP, Meyer E, Khafif M, Bonnard G, Meyer Y., FEBS Lett. 579(2), 2005
PMID: 15642341
Identification and characterization of thioredoxin h isoforms differentially expressed in germinating seeds of the model legume Medicago truncatula.
Renard M, Alkhalfioui F, Schmitt-Keichinger C, Ritzenthaler C, Montrichard F., Plant Physiol. 155(3), 2011
PMID: 21239621
How do cytokinins affect the cell?
Romanov GA., 2009
S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration.
Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M., Plant Cell 19(12), 2007
PMID: 18165327
Poplar peroxiredoxin Q. A thioredoxin-linked chloroplast antioxidant functional in pathogen defense.
Rouhier N, Gelhaye E, Gualberto JM, Jordy MN, De Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot JP., Plant Physiol. 134(3), 2004
PMID: 14976238
The plant multigenic family of thiol peroxidases.
Rouhier N, Jacquot JP., Free Radic. Biol. Med. 38(11), 2005
PMID: 15890615
Genome structure of the legume, Lotus japonicus.
Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe A, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui K, Baba T, Nakamichi T, Mori H, Tabata S., DNA Res. 15(4), 2008
PMID: 18511435
PLANT THIOREDOXIN SYSTEMS REVISITED.
Schurmann P, Jacquot JP., Annu. Rev. Plant Physiol. Plant Mol. Biol. 51(), 2000
PMID: 15012197
Immunocytochemical localization of Pisum sativum TRXs f and m in non-photosynthetic tissues.
Traverso JA, Vignols F, Cazalis R, Serrato AJ, Pulido P, Sahrawy M, Meyer Y, Cejudo FJ, Chueca A., J. Exp. Bot. 59(6), 2008
PMID: 18356145
Rapid increase of NO release in plant cell cultures induced by cytokinin.
Tun NN, Holk A, Scherer GF., FEBS Lett. 509(2), 2001
PMID: 11741583
Nitrosative stress in plants.
Valderrama R, Corpas FJ, Carreras A, Fernandez-Ocana A, Chaki M, Luque F, Gomez-Rodriguez MV, Colmenero-Varea P, Del Rio LA, Barroso JB., FEBS Lett. 581(3), 2007
PMID: 17240373
Plant thioredoxins are key actors in the oxidative stress response.
Vieira Dos Santos C, Rey P., Trends Plant Sci. 11(7), 2006
PMID: 16782394
Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence.
Zavaleta-Mancera HA, Lopez-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-Garcia C, Vargas-Suarez M, Ougham H., J. Plant Physiol. 164(12), 2007
PMID: 17485137

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21562331
PubMed | Europe PMC

Search this title in

Google Scholar