Peroxiredoxins in Plants and Cyanobacteria

Dietz K-J (2011)
Antioxidants & Redox Signaling 15(4): 1129-1159.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Peroxiredoxins (Prx) are central elements of the antioxidant defense system and the dithiol-disulfide redox regulatory network of the plant and cyanobacterial cell. They employ a thiol-based catalytic mechanism to reduce H(2)O(2), alkylhydroperoxide, and peroxinitrite. In plants and cyanobacteria, there exist 2-CysPrx, 1-CysPrx, PrxQ, and type II Prx. Higher plants typically contain at least one plastid 2-CysPrx, one nucleo-cytoplasmic 1-CysPrx, one chloroplast PrxQ, and one each of cytosolic, mitochondrial, and plastidic type II Prx. Cyanobacteria express variable sets of three or more Prxs. The catalytic cycle consists of three steps: (i) peroxidative reduction, (ii) resolving step, and (iii) regeneration using diverse electron donors such as thioredoxins, glutaredoxins, cyclophilins, glutathione, and ascorbic acid. Prx proteins undergo major conformational changes in dependence of their redox state. Thus, they not only modulate cellular reactive oxygen species-and reactive nitrogen species-dependent signaling, but depending on the Prx type they sense the redox state, transmit redox information to binding partners, and function as chaperone. They serve in context of photosynthesis and respiration, but also in metabolism and development of all tissues, for example, in nodules as well as during seed and fruit development. The article surveys the current literature and attempts a mostly comprehensive coverage of present day knowledge and concepts on Prx mechanism, regulation, and function and thus on the whole Prx systems in plants. Antioxid. Redox Signal. 15, 1129-1159.
Antioxidants & Redox Signaling


Dietz K-J. Peroxiredoxins in Plants and Cyanobacteria. Antioxidants & Redox Signaling. 2011;15(4):1129-1159.
Dietz, K. - J. (2011). Peroxiredoxins in Plants and Cyanobacteria. Antioxidants & Redox Signaling, 15(4), 1129-1159. doi:10.1089/ars.2010.3657
Dietz, K. - J. (2011). Peroxiredoxins in Plants and Cyanobacteria. Antioxidants & Redox Signaling 15, 1129-1159.
Dietz, K.-J., 2011. Peroxiredoxins in Plants and Cyanobacteria. Antioxidants & Redox Signaling, 15(4), p 1129-1159.
K.-J. Dietz, “Peroxiredoxins in Plants and Cyanobacteria”, Antioxidants & Redox Signaling, vol. 15, 2011, pp. 1129-1159.
Dietz, K.-J.: Peroxiredoxins in Plants and Cyanobacteria. Antioxidants & Redox Signaling. 15, 1129-1159 (2011).
Dietz, Karl-Josef. “Peroxiredoxins in Plants and Cyanobacteria”. Antioxidants & Redox Signaling 15.4 (2011): 1129-1159.

93 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

2-Cys peroxiredoxin of Plasmodium falciparum is involved in resistance to heat stress of the parasite.
Kimura R, Komaki-Yasuda K, Kawazu S, Kano S., Parasitol Int 62(2), 2013
PMID: 23201565
Oxidative folding in chloroplasts.
Kieselbach T., Antioxid Redox Signal 19(1), 2013
PMID: 23289792
Down-regulation of catalase activity allows transient accumulation of a hydrogen peroxide signal in Chlamydomonas reinhardtii.
Michelet L, Roach T, Fischer BB, Bedhomme M, Lemaire SD, Krieger-Liszkay A., Plant Cell Environ 36(6), 2013
PMID: 23237476
Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna.
Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC., BMC Genomics 14(), 2013
PMID: 23324106
Proteomics-based investigation of salt-responsive mechanisms in plant roots.
Zhao Q, Zhang H, Wang T, Chen S, Dai S., J Proteomics 82(), 2013
PMID: 23385356
Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance.
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C., Antioxid Redox Signal 17(8), 2012
PMID: 22531002
Protein S-nitrosylation: what's going on in plants?
Astier J, Kulik A, Koen E, Besson-Bard A, Bourque S, Jeandroz S, Lamotte O, Wendehenne D., Free Radic Biol Med 53(5), 2012
PMID: 22750205
ROS homeostasis during development: an evolutionary conserved strategy.
Schippers JH, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B., Cell Mol Life Sci 69(19), 2012
PMID: 22842779
The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize.
Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R, Tercet-Laforgue T, Hirel B., J Exp Bot 63(14), 2012
PMID: 22936829
Sequence analysis and homology modeling of peroxidase from Medicago sativa.
Hooda V, Gundala PB, Chinthala P., Bioinformation 8(20), 2012
PMID: 23275690
Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.
Bertoletto PR, Ikejiri AT, Somaio Neto F, Chaves JC, Teruya R, Bertoletto ER, Taha MO, Fagundes DJ., Acta Cir Bras 27(11), 2012
PMID: 23117609
Environmental control of plant nuclear gene expression by chloroplast redox signals.
Pfalz J, Liebers M, Hirth M, Grübler B, Holtzegel U, Schröter Y, Dietzel L, Pfannschmidt T., Front Plant Sci 3(), 2012
PMID: 23181068

187 References

Daten bereitgestellt von Europe PubMed Central.

Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation.
Trujillo M, Clippe A, Manta B, Ferrer-Sueta G, Smeets A, Declercq JP, Knoops B, Radi R., Arch. Biochem. Biophys. 467(1), 2007
PMID: 17892856
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Trujillo M, Ferrer-Sueta G, Thomson L, Flohe L, Radi R., Subcell. Biochem. 44(), 2007
PMID: 18084891
A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase.
Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J, Morgan BA., Mol. Cell 15(1), 2004
PMID: 15225554
In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family.
Verdoucq L, Vignols F, Jacquot JP, Chartier Y, Meyer Y., J. Biol. Chem. 274(28), 1999
PMID: 10391912
A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway.
Vivancos AP, Castillo EA, Biteau B, Nicot C, Ayte J, Toledano MB, Hidalgo E., Proc. Natl. Acad. Sci. U.S.A. 102(25), 2005
PMID: 15956211
Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity.
Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wyslouch-Cieszynska A, Zareba-Koziol M, Krzywinska E, Dadlez M, Dobrowolska G, Wendehenne D., Biochem. J. 429(1), 2010
PMID: 20397974
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
Wood ZA, Poole LB, Karplus PA., Science 300(5619), 2003
PMID: 12714747
Structure, mechanism and regulation of peroxiredoxins.
Wood ZA, Schroder E, Robin Harris J, Poole LB., Trends Biochem. Sci. 28(1), 2003
PMID: 12517450
Mitogen-activated protein kinase-mediated phosphorylation of peroxiredoxin 6 regulates its phospholipase A(2) activity.
Wu Y, Feinstein SI, Manevich Y, Chowdhury I, Pak JH, Kazi A, Dodia C, Speicher DW, Fisher AB., Biochem. J. 419(3), 2009
PMID: 19140803
Thioredoxin peroxidase in the Cyanobacterium Synechocystis sp. PCC 6803.
Yamamoto H, Miyake C, Dietz KJ, Tomizawa K, Murata N, Yokota A., FEBS Lett. 447(2-3), 1999
PMID: 10214959
Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana.
Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T., Plant Cell Physiol. 45(1), 2004
PMID: 14749482


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 21194355
PubMed | Europe PMC

Suchen in

Google Scholar