Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae)

Opitz S, Mix A, Winde IB, Müller C (2011)
ChemBioChem 12(8): 1252-1257.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
The sawfly species Athalia rosae (L.) (Hymenoptera: Tenthredinidae) is phytophagous on plants of the family Brassicaceae and thus needs to cope with the plant defence, the glucosinolate-myrosinase system. The larvae sequester glucosinolates in their haemolymph. We investigated how these compounds are metabolized by this specialist. When larvae were fed with ([C-14]-labelled) benzylglucosinolate, one major degradation metabolite, with the same sum formula as benzylglucosinolate, was defecated. This metabolite was also found in the haemolymph along with desulfobenzylglucosinolate, which continuously increased in concentration. NMR spectroscopy in conjunction with LC-TOF-MS measurements revealed the major degradation metabolite to be desulfobenzylglucosinolate-3-sulfate, probably converted from desulfobenzylglucosinolate after sulfation at the sugar moiety. The enzymes responsible must be located in the haemolymph. Additionally, a putative sulfotransferase forms benzylglucosinolate sulfate in the gut from intact, non-sequestered glucosinolate. The corresponding desulfoglucosinolate sulfates were also detected in faeces after feeding experiments with phenylethylglucosinolate and prop-2-enylglucosinolate, which indicates a similar degradation mechanism for various glucosinolates in the larvae. This is the first report on glucosinolate metabolism of a glucosinolate-sequestering insect species.
Publishing Year
ISSN
PUB-ID

Cite this

Opitz S, Mix A, Winde IB, Müller C. Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae). ChemBioChem. 2011;12(8):1252-1257.
Opitz, S., Mix, A., Winde, I. B., & Müller, C. (2011). Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae). ChemBioChem, 12(8), 1252-1257.
Opitz, S., Mix, A., Winde, I. B., and Müller, C. (2011). Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae). ChemBioChem 12, 1252-1257.
Opitz, S., et al., 2011. Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae). ChemBioChem, 12(8), p 1252-1257.
S. Opitz, et al., “Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae)”, ChemBioChem, vol. 12, 2011, pp. 1252-1257.
Opitz, S., Mix, A., Winde, I.B., Müller, C.: Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae). ChemBioChem. 12, 1252-1257 (2011).
Opitz, Sebastian, Mix, Andreas, Winde, Inis B., and Müller, Caroline. “Desulfation Followed by Sulfation: Metabolism of Benzylglucosinolate in *Athalia rosae* (Hymenoptera: Tenthredinidae)”. ChemBioChem 12.8 (2011): 1252-1257.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae.
Muller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N., Phytochemistry 118(), 2015
PMID: 26318325
Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.
Beran F, Pauchet Y, Kunert G, Reichelt M, Wielsch N, Vogel H, Reinecke A, Svatos A, Mewis I, Schmid D, Ramasamy S, Ulrichs C, Hansson BS, Gershenzon J, Heckel DG., Proc. Natl. Acad. Sci. U.S.A. 111(20), 2014
PMID: 24799680
Genes involved in the evolution of herbivory by a leaf-mining, Drosophilid fly.
Whiteman NK, Gloss AD, Sackton TB, Groen SC, Humphrey PT, Lapoint RT, Sonderby IE, Halkier BA, Kocks C, Ausubel FM, Pierce NE., Genome Biol Evol 4(9), 2012
PMID: 22813779
Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia.
Opitz SE, Boeve JL, Nagy ZT, Sonet G, Koch F, Muller C., PLoS ONE 7(4), 2012
PMID: 22485146

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21506231
PubMed | Europe PMC

Search this title in

Google Scholar