Evolution of reproductive development in the volvocine algae

Hallmann A (2011)
Sexual Plant Reproduction 24(2): 97-112.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male-female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ-soma division of labor and male-female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed.
Sexual Plant Reproduction


Hallmann A. Evolution of reproductive development in the volvocine algae. Sexual Plant Reproduction. 2011;24(2):97-112.
Hallmann, A. (2011). Evolution of reproductive development in the volvocine algae. Sexual Plant Reproduction, 24(2), 97-112. doi:10.1007/s00497-010-0158-4
Hallmann, A. (2011). Evolution of reproductive development in the volvocine algae. Sexual Plant Reproduction 24, 97-112.
Hallmann, A., 2011. Evolution of reproductive development in the volvocine algae. Sexual Plant Reproduction, 24(2), p 97-112.
A. Hallmann, “Evolution of reproductive development in the volvocine algae”, Sexual Plant Reproduction, vol. 24, 2011, pp. 97-112.
Hallmann, A.: Evolution of reproductive development in the volvocine algae. Sexual Plant Reproduction. 24, 97-112 (2011).
Hallmann, Armin. “Evolution of reproductive development in the volvocine algae”. Sexual Plant Reproduction 24.2 (2011): 97-112.

22 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.
Boyd M, Rosenzweig F, Herron MD., PLoS One 13(1), 2018
PMID: 29381766
Distribution patterns and impact of transposable elements in genes of green algae.
Philippsen GS, Avaca-Crusca JS, Araujo APU, DeMarco R., Gene 594(1), 2016
PMID: 27614292
What do isogamous organisms teach us about sex and the two sexes?
Lehtonen J, Kokko H, Parker GA., Philos Trans R Soc Lond B Biol Sci 371(1706), 2016
PMID: 27619696
The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri.
von der Heyde EL, Klein B, Abram L, Hallmann A., BMC Biotechnol 15(), 2015
PMID: 25888095
Core principles of bacterial autoinducer systems.
Hense BA, Schuster M., Microbiol Mol Biol Rev 79(1), 2015
PMID: 25694124
Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta)
Fučíková K, Pažoutová M, Rindi F, Verbruggen H., J Phycol 51(3), 2015
PMID: IND603407634
Pheromone signaling during sexual reproduction in algae.
Frenkel J, Vyverman W, Pohnert G., Plant J 79(4), 2014
PMID: 24597605
Stable nuclear transformation of Pandorina morum.
Lerche K, Hallmann A., BMC Biotechnol 14(), 2014
PMID: 25031031
Organelle genome complexity scales positively with organism size in volvocine green algae.
Smith DR, Hamaji T, Olson BJ, Durand PM, Ferris P, Michod RE, Featherston J, Nozaki H, Keeling PJ., Mol Biol Evol 30(4), 2013
PMID: 23300255
Stable nuclear transformation of Eudorina elegans.
Lerche K, Hallmann A., BMC Biotechnol 13(), 2013
PMID: 23402598
Widespread decay of vitamin-related pathways: coincidence or consequence?
Helliwell KE, Wheeler GL, Smith AG., Trends Genet 29(8), 2013
PMID: 23623319
TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation.
Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J., Curr Opin Biotechnol 23(3), 2012
PMID: 22209109
Stem cells: a view from the roots.
Somorjai IM, Lohmann JU, Holstein TW, Zhao Z., Biotechnol J 7(6), 2012
PMID: 22581706

163 References

Daten bereitgestellt von Europe PubMed Central.

Biochemistry of the extracellular matrix of Volvox.
Sumper M, Hallmann A., Int. Rev. Cytol. 180(), 1998
PMID: 9496634
How a sex pheromone might act at a concentration below 10(-16) M.
Sumper M, Berg E, Wenzl S, Godl K., EMBO J. 12(3), 1993
PMID: 8458341
The major evolutionary transitions.
Szathmary E, Smith JM., Nature 374(6519), 1995
PMID: 7885442
Control of cell division by a retinoblastoma protein homolog in Chlamydomonas.
Umen JG, Goodenough UW., Genes Dev. 15(13), 2001
PMID: 11445540
The continuity of the germ plasm as a foundation of a theory of heredity
Weismann A., 1889

Weismann A., 1892

Weismann A., 1893
On the evolution of differentiated multicellularity.
Willensdorfer M., Evolution 63(2), 2009
PMID: 19154376


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 21174128
PubMed | Europe PMC

Suchen in

Google Scholar