Robustness of Radial Basis Functions

Eickhoff R, Rückert U (2005)
In: Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN). Cabestany J, Prieto A, Sandoval DF (Eds);Barcelona, Spain: 264-271.

Conference Paper | Published | English

No fulltext has been uploaded

Author
;
Editor
Cabestany, J. ; Prieto, A. ; Sandoval, D.F.
Abstract
Neural networks are intended to be used in future nanoelectronic technology since these architectures seem to be robust to malfunctioning elements and noise in its inputs and parameters. In this work, the robustness of radial basis function networks is analyzed in order to operate in noisy and unreliable environment. Furthermore, upper bounds on the mean square error under noise contaminated parameters and inputs are determined if the network parameters are constrained. To achieve robuster neural network architectures fundamental methods are introduced to identify sensitive parameters and neurons.
Publishing Year
PUB-ID

Cite this

Eickhoff R, Rückert U. Robustness of Radial Basis Functions. In: Cabestany J, Prieto A, Sandoval DF, eds. Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN). Barcelona, Spain; 2005: 264-271.
Eickhoff, R., & Rückert, U. (2005). Robustness of Radial Basis Functions. In J. Cabestany, A. Prieto, & D. F. Sandoval (Eds.), Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN) (pp. 264-271). Barcelona, Spain.
Eickhoff, R., and Rückert, U. (2005). “Robustness of Radial Basis Functions” in Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN), ed. J. Cabestany, A. Prieto, and D. F. Sandoval (Barcelona, Spain), 264-271.
Eickhoff, R., & Rückert, U., 2005. Robustness of Radial Basis Functions. In J. Cabestany, A. Prieto, & D. F. Sandoval, eds. Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN). Barcelona, Spain, pp. 264-271.
R. Eickhoff and U. Rückert, “Robustness of Radial Basis Functions”, Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN), J. Cabestany, A. Prieto, and D.F. Sandoval, eds., Barcelona, Spain: 2005, pp.264-271.
Eickhoff, R., Rückert, U.: Robustness of Radial Basis Functions. In: Cabestany, J., Prieto, A., and Sandoval, D.F. (eds.) Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN). p. 264-271. Barcelona, Spain (2005).
Eickhoff, Ralf, and Rückert, Ulrich. “Robustness of Radial Basis Functions”. Proceedings of the 8th International Work-Conference on Artificial Neural Networks (IWANN). Ed. J. Cabestany, A. Prieto, and D.F. Sandoval. Barcelona, Spain, 2005. 264-271.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar