Responses of brainstem lateral line units to different stimulus source locations and vibration directions

Künzel S, Bleckmann H, Mogdans J (2011)
Journal of Comparative Physiology A 197(7): 773-787.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
We recorded responses of lateral line units in the medial octavolateralis nucleus in the brainstem of goldfish, Carassius auratus, to a 50 Hz vibrating sphere and studied how responses were affected by placing the sphere at various locations alongside the fish and by different directions of vibration. In most units (88%), stimulation with the sphere from one or more spatial locations caused an increase and/or decrease in discharge rate. In few units (10%), discharge rate was increased by stimulation from one location and decreased by stimulation from an adjacent location in space. In a minority of the units (2%), changing sphere location did not affect discharge rates but caused a change in phase coupling. Units sensitive to a distinct sphere vibration direction were not found. The data also show that the responses of most brainstem units differ from those of primary afferent nerve fibers. Whereas primary afferents represent the pressure gradient pattern generated by the sphere and thus encode location and vibration direction of a vibrating sphere, most brainstem units do not. This information may be represented in the brainstem by a population code or in higher centers of the ascending lateral line pathway.
Erscheinungsjahr
Zeitschriftentitel
Journal of Comparative Physiology A
Band
197
Zeitschriftennummer
7
Seite
773-787
ISSN
eISSN
PUB-ID

Zitieren

Künzel S, Bleckmann H, Mogdans J. Responses of brainstem lateral line units to different stimulus source locations and vibration directions. Journal of Comparative Physiology A. 2011;197(7):773-787.
Künzel, S., Bleckmann, H., & Mogdans, J. (2011). Responses of brainstem lateral line units to different stimulus source locations and vibration directions. Journal of Comparative Physiology A, 197(7), 773-787. doi:10.1007/s00359-011-0642-9
Künzel, S., Bleckmann, H., and Mogdans, J. (2011). Responses of brainstem lateral line units to different stimulus source locations and vibration directions. Journal of Comparative Physiology A 197, 773-787.
Künzel, S., Bleckmann, H., & Mogdans, J., 2011. Responses of brainstem lateral line units to different stimulus source locations and vibration directions. Journal of Comparative Physiology A, 197(7), p 773-787.
S. Künzel, H. Bleckmann, and J. Mogdans, “Responses of brainstem lateral line units to different stimulus source locations and vibration directions”, Journal of Comparative Physiology A, vol. 197, 2011, pp. 773-787.
Künzel, S., Bleckmann, H., Mogdans, J.: Responses of brainstem lateral line units to different stimulus source locations and vibration directions. Journal of Comparative Physiology A. 197, 773-787 (2011).
Künzel, Silke, Bleckmann, Horst, and Mogdans, Joachim. “Responses of brainstem lateral line units to different stimulus source locations and vibration directions”. Journal of Comparative Physiology A 197.7 (2011): 773-787.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere.
Meyer G, Klein A, Mogdans J, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22669431

46 References

Daten bereitgestellt von Europe PubMed Central.

Somatotopy of the lateral line projection in larval zebrafish.
Alexandre D, Ghysen A., Proc. Natl. Acad. Sci. U.S.A. 96(13), 1999
PMID: 10377454

M, J Comp Physiol A 167(), 1990

AUTHOR UNKNOWN, 0

JHS, J Mar Biol Assoc UK 70(), 1990
Physiology of lateral line mechanoreceptive regions in the elasmobranch brain.
Bleckmann H, Weiss O, Bullock TH., J. Comp. Physiol. A 164(4), 1989
PMID: 2926692

DM, J Comp Physiol A 127(), 1978

CV, J Comp Physiol A 143(), 1981
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud BP, Brucker C, Hofmann MH, Bleckmann H., J. Neurosci. 28(17), 2008
PMID: 18434526
Dipole source localization by mottled sculpin. I. Approach strategies.
Coombs S, Conley RA., J. Comp. Physiol. A 180(4), 1997
PMID: 9106998
Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi).
Coombs S, Patton P., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195(3), 2009
PMID: 19137317
Modeling and measuring lateral line excitation patterns to changing dipole source locations.
Coombs S, Hastings M, Finneran J., J. Comp. Physiol. A 178(3), 1996
PMID: 8583423
Transformation of peripheral inputs by the first-order lateral line brainstem nucleus.
Coombs S, Mogdans J, Halstead M, Montgomery J., J. Comp. Physiol. A 182(5), 1998
PMID: 9579053
Source location encoding in the fish lateral line canal.
Curcic-Blake B, van Netten SM., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574811
Neuronal population coding of movement direction.
Georgopoulos AP, Schwartz AB, Kettner RE., Science 233(4771), 1986
PMID: 3749885
Object localization through the lateral line system of fish: theory and experiment.
Goulet J, Engelmann J, Chagnaud BP, Franosch JM, Suttner MD, van Hemmen JL., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(1), 2007
PMID: 18060550
Topographic maps are fundamental to sensory processing.
Kaas JH., Brain Res. Bull. 44(2), 1997
PMID: 9292198
Distinct auditory and lateral line nuclei in the midbrain catfishes.
Knudsen EI., J. Comp. Neurol. 173(3), 1977
PMID: 856890
Velocity- and acceleration-sensitive units in the trunk lateral line of the trout.
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Brainstem lateral line responses to sinusoidal wave stimuli in still and running water.
Krother S, Mogdans J, Bleckmann H., J. Exp. Biol. 205(Pt 10), 2002
PMID: 11976358

CA, J Morphol 171(), 1982

J, J Comp Physiol A 185(), 1999

J, Zoology 102(), 2000

J, Rev Fish Biol Fish 5(), 1995
Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus
Montgomery J, Bodznick D, Halstead M., J. Exp. Biol. 199(Pt 4), 1996
PMID: 9318679

JC, Nature 389(), 1997

H, J Comp Physiol A 157(), 1985
Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus.
New JG, Coombs S, McCormick CA, Oshel PE., J. Comp. Neurol. 366(3), 1996
PMID: 8907363

RG, 1989

RG, 1988

BL, J Comp Physiol A 135(), 1980
A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus.
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378

F, 1997

M, J Comp Physiol A 174(), 1994

NAM, Comp Biochem Physiol A 88(), 1987
Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis).
Simmons AM, Costa LM, Gerstein HB., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190(9), 2004
PMID: 15300386
Formation of topographic maps.
Udin SB, Fawcett JW., Annu. Rev. Neurosci. 11(), 1988
PMID: 3284443

EW, 1998

RJ, J Exp Biol 179(), 1993

KE, J Comp Physiol A 158(), 1986

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21479569
PubMed | Europe PMC

Suchen in

Google Scholar