A Perceptual Memory System for Affordance Learning in Humanoid Robots

Kammer M, Tscherepanow M, Schack T, Nagai Y (2011)
In: Proceedings of the International Conference on Artificial Neural Networks (ICANN). Honkela T, Duch W, Girolami M, Kaski S (Eds); Lecture Notes in Computer Science, 6792. Berlin: Springer: 349-356.

Download
OA
Konferenzbeitrag | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Herausgeber
; ; ;
Abstract / Bemerkung
Memory constitutes an essential cognitive capability of humans and animals. It allows them to act in very complex, non-stationary environments. In this paper, we propose a perceptual memory system, which is intended to be applied on a humanoid robot learning affordances. According to the properties of biological memory systems, it has been designed in such a way as to enable life-long learning without catastrophic forgetting. Based on clustering sensory information, a symbolic representation is derived automatically. In contrast to alternative approaches, our memory system does not rely on pre-trained models and works completely unsupervised.
Erscheinungsjahr
Titel des Konferenzbandes
Proceedings of the International Conference on Artificial Neural Networks (ICANN)
Seite
349-356
Konferenz
Artificial Neural Networks and Machine Learning – ICANN 2011 : 21st International Conference on Artificial Neural Networks, Proceedings, Part II
Konferenzort
Espoo, Finland
Konferenzdatum
2011-06-14 – 2011-06-17
PUB-ID

Zitieren

Kammer M, Tscherepanow M, Schack T, Nagai Y. A Perceptual Memory System for Affordance Learning in Humanoid Robots. In: Honkela T, Duch W, Girolami M, Kaski S, eds. Proceedings of the International Conference on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 6792. Berlin: Springer; 2011: 349-356.
Kammer, M., Tscherepanow, M., Schack, T., & Nagai, Y. (2011). A Perceptual Memory System for Affordance Learning in Humanoid Robots. In T. Honkela, W. Duch, M. Girolami, & S. Kaski (Eds.), Lecture Notes in Computer Science, 6792. Proceedings of the International Conference on Artificial Neural Networks (ICANN) (pp. 349-356). Berlin: Springer. doi:10.1007/978-3-642-21738-8_45
Kammer, M., Tscherepanow, M., Schack, T., and Nagai, Y. (2011). “A Perceptual Memory System for Affordance Learning in Humanoid Robots” in Proceedings of the International Conference on Artificial Neural Networks (ICANN), Honkela, T., Duch, W., Girolami, M., and Kaski, S. eds. Lecture Notes in Computer Science, 6792 (Berlin: Springer), 349-356.
Kammer, M., et al., 2011. A Perceptual Memory System for Affordance Learning in Humanoid Robots. In T. Honkela, et al., eds. Proceedings of the International Conference on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 6792. Berlin: Springer, pp. 349-356.
M. Kammer, et al., “A Perceptual Memory System for Affordance Learning in Humanoid Robots”, Proceedings of the International Conference on Artificial Neural Networks (ICANN), T. Honkela, et al., eds., Lecture Notes in Computer Science, 6792, Berlin: Springer, 2011, pp.349-356.
Kammer, M., Tscherepanow, M., Schack, T., Nagai, Y.: A Perceptual Memory System for Affordance Learning in Humanoid Robots. In: Honkela, T., Duch, W., Girolami, M., and Kaski, S. (eds.) Proceedings of the International Conference on Artificial Neural Networks (ICANN). Lecture Notes in Computer Science, 6792. p. 349-356. Springer, Berlin (2011).
Kammer, Marc, Tscherepanow, Marko, Schack, Thomas, and Nagai, Yukie. “A Perceptual Memory System for Affordance Learning in Humanoid Robots”. Proceedings of the International Conference on Artificial Neural Networks (ICANN). Ed. Timo Honkela, Wlodzislaw Duch, Mark Girolami, and Samuel Kaski. Berlin: Springer, 2011. Lecture Notes in Computer Science, 6792. 349-356.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2012-06-18T11:13:27Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche