Robustness of radial basis functions

Eickhoff R, Rückert U (2007)
Neurocomputing 70(16-18): 2758-2767.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
Neural networks are intended to be used in future nanoelectronic technology since these architectures seem to be robust to malfunctioning elements and noise in its inputs and parameters. In this work, the robustness of radial basis function networks is analyzed in order to operate in noisy and unreliable environment. Furthermore, upper bounds on the mean square error under noise contaminated parameters and inputs are determined if the network parameters are constrained. To achieve robuster neural network architectures fundamental methods are introduced to identify sensitive parameters and neurons.
Stichworte
Erscheinungsjahr
Zeitschriftentitel
Neurocomputing
Band
70
Zeitschriftennummer
16-18
Seite
2758-2767
ISSN
PUB-ID

Zitieren

Eickhoff R, Rückert U. Robustness of radial basis functions. Neurocomputing. 2007;70(16-18):2758-2767.
Eickhoff, R., & Rückert, U. (2007). Robustness of radial basis functions. Neurocomputing, 70(16-18), 2758-2767. doi:10.1016/j.neucom.2006.04.012
Eickhoff, R., and Rückert, U. (2007). Robustness of radial basis functions. Neurocomputing 70, 2758-2767.
Eickhoff, R., & Rückert, U., 2007. Robustness of radial basis functions. Neurocomputing, 70(16-18), p 2758-2767.
R. Eickhoff and U. Rückert, “Robustness of radial basis functions”, Neurocomputing, vol. 70, 2007, pp. 2758-2767.
Eickhoff, R., Rückert, U.: Robustness of radial basis functions. Neurocomputing. 70, 2758-2767 (2007).
Eickhoff, Ralf, and Rückert, Ulrich. “Robustness of radial basis functions”. Neurocomputing 70.16-18 (2007): 2758-2767.
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access