A Competitive Layer Model for Feature Binding and Sensory Segmentation

Wersing H, Steil JJ, Ritter H (2001)
Neural Computation 13(2): 357-387.

Journal Article | Published | English

No fulltext has been uploaded

Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Wersing H, Steil JJ, Ritter H. A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation. 2001;13(2):357-387.
Wersing, H., Steil, J. J., & Ritter, H. (2001). A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation, 13(2), 357-387.
Wersing, H., Steil, J. J., and Ritter, H. (2001). A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation 13, 357-387.
Wersing, H., Steil, J.J., & Ritter, H., 2001. A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation, 13(2), p 357-387.
H. Wersing, J.J. Steil, and H. Ritter, “A Competitive Layer Model for Feature Binding and Sensory Segmentation”, Neural Computation, vol. 13, 2001, pp. 357-387.
Wersing, H., Steil, J.J., Ritter, H.: A Competitive Layer Model for Feature Binding and Sensory Segmentation. Neural Computation. 13, 357-387 (2001).
Wersing, Heiko, Steil, Jochen J., and Ritter, Helge. “A Competitive Layer Model for Feature Binding and Sensory Segmentation”. Neural Computation 13.2 (2001): 357-387.
This data publication is cited in the following publications:
This publication cites the following data publications:

25 Citations in Europe PMC

Data provided by Europe PubMed Central.

Scale-limited activating sets and multiperiodicity for threshold-linear networks on time scales.
Huang Z, Raffoul YN, Cheng CY., IEEE Trans Cybern 44(4), 2014
PMID: 23757562
Boundedness and complete stability of complex-valued neural networks with time delay.
Bo Zhou , Qiankun Song ., IEEE Trans Neural Netw Learn Syst 24(8), 2013
PMID: 24808563
Memory dynamics in attractor networks with saliency weights.
Tang H, Li H, Yan R., Neural Comput 22(7), 2010
PMID: 20235821
Nontrivial global attractors in 2-D multistable attractor neural networks.
Zou L, Tang H, Tan KC, Zhang W., IEEE Trans Neural Netw 20(11), 2009
PMID: 19884069
State-dependent computation using coupled recurrent networks.
Rutishauser U, Douglas RJ., Neural Comput 21(2), 2009
PMID: 19431267
Permitted and forbidden sets in discrete-time linear threshold recurrent neural networks.
Yi Z, Zhang L, Yu J, Tan KK., IEEE Trans Neural Netw 20(6), 2009
PMID: 19423436
Representations of continuous attractors of recurrent neural networks.
Yu J, Yi Z, Zhang L., IEEE Trans Neural Netw 20(2), 2009
PMID: 19150791
Analysis of continuous attractors for 2-D linear threshold neural networks.
Zou L, Tang H, Tan KC, Zhang W., IEEE Trans Neural Netw 20(1), 2009
PMID: 19129036
Selectivity and stability via dendritic nonlinearity.
Morita K, Okada M, Aihara K., Neural Comput 19(7), 2007
PMID: 17521280
Learning lateral interactions for feature binding and sensory segmentation from prototypic basis interactions.
Weng S, Wersing H, Steil JJ, Ritter H., IEEE Trans Neural Netw 17(4), 2006
PMID: 16856650
Dynamics analysis and analog associative memory of networks with LT neurons.
Tang H, Tan KC, Teoh EJ., IEEE Trans Neural Netw 17(2), 2006
PMID: 16566468
Analysis of cyclic dynamics for networks of linear threshold neurons.
Tang HJ, Tan KC, Zhang W., Neural Comput 17(1), 2005
PMID: 15563749
Discrimination networks for maximum selection.
Jain BJ, Wysotzki F., Neural Netw 17(1), 2004
PMID: 14690714
Analyzing stability of equilibrium points in neural networks: a general approach.
Truccolo WA, Rangarajan G, Chen Y, Ding M., Neural Netw 16(10), 2003
PMID: 14622876
Permitted and forbidden sets in symmetric threshold-linear networks.
Hahnloser RH, Seung HS, Slotine JJ., Neural Comput 15(3), 2003
PMID: 12620160
Selectively grouping neurons in recurrent networks of lateral inhibition.
Xie X, Hahnloser RH, Seung HS., Neural Comput 14(11), 2002
PMID: 12433293
Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays.
Yi Z, Tan KK., Phys Rev E Stat Nonlin Soft Matter Phys 66(1 Pt 1), 2002
PMID: 12241387
Attentional recruitment of inter-areal recurrent networks for selective gain control.
Hahnloser RH, Douglas RJ, Hepp K., Neural Comput 14(7), 2002
PMID: 12079551

18 References

Data provided by Europe PubMed Central.

A model for the intracortical origin of orientation preference and tuning in macaque striate cortex.
Adorjan P, Levitt JB, Lund JS, Obermayer K., Vis. Neurosci. 16(2), 1999
PMID: 10367965
Recurrent excitation in neocortical circuits.
Douglas RJ, Koch C, Mahowald M, Martin KA, Suarez HH., Science 269(5226), 1995
PMID: 7638624
Piecewise affine bijections of ?n, and the equation Sx+−Tx−=y
Kuhn, Linear Algebra and its Applications 96(1), 1987
A competitive-layer model for feature binding and sensory segmentation.
Wersing H, Steil JJ, Ritter H., Neural Comput 13(2), 2001
PMID: 11177439
On Neurodynamics with Limiter Function and Linsker's Developmental Model
Feng, Neural Computation 8(5), 1996

Lippmann, IEEE ASSP Magazine 4(2), 1987
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS., Nature 405(6789), 2000
PMID: 10879535
A model of multiplicative neural responses in parietal cortex.
Salinas E, Abbott LF., Proc. Natl. Acad. Sci. U.S.A. 93(21), 1996
PMID: 8876244

Feng, Journal of Physics A Mathematical and General 29(16), 1996
Convergent activation dynamics in continuous time networks
Hirsch, Neural Networks 2(5), 1989
Equilibria of the brain-state-in-a-box (BSB) neural model
Greenberg, Neural Networks 1(4), 1988
Self-organization of orientation sensitive cells in the striate cortex.
von der Malsburg C., Kybernetik 14(2), 1973
PMID: 4786750
Theory of orientation tuning in visual cortex.
Ben-Yishai R, Bar-Or RL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 92(9), 1995
PMID: 7731993

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 11506671
PubMed | Europe PMC

Search this title in

Google Scholar