Schwann Cells can be reprogrammed to multipotency by culture.

Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B (2011)
STEM CELLS AND Development 20(12): 2053-2064.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription-polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75(NTR), and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions.
Publishing Year

Cite this

Widera D, Heimann P, Zander C, et al. Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development. 2011;20(12):2053-2064.
Widera, D., Heimann, P., Zander, C., Imielski, Y., Heidbreder, M., Heilemann, M., Kaltschmidt, C., et al. (2011). Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development, 20(12), 2053-2064. doi:10.1089/scd.2010.0525
Widera, D., Heimann, P., Zander, C., Imielski, Y., Heidbreder, M., Heilemann, M., Kaltschmidt, C., and Kaltschmidt, B. (2011). Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development 20, 2053-2064.
Widera, D., et al., 2011. Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development, 20(12), p 2053-2064.
D. Widera, et al., “Schwann Cells can be reprogrammed to multipotency by culture.”, STEM CELLS AND Development, vol. 20, 2011, pp. 2053-2064.
Widera, D., Heimann, P., Zander, C., Imielski, Y., Heidbreder, M., Heilemann, M., Kaltschmidt, C., Kaltschmidt, B.: Schwann Cells can be reprogrammed to multipotency by culture. STEM CELLS AND Development. 20, 2053-2064 (2011).
Widera, Darius, Heimann, Peter, Zander, Christin, Imielski, Yvonne, Heidbreder, Meike, Heilemann, Mike, Kaltschmidt, Christian, and Kaltschmidt, Barbara. “Schwann Cells can be reprogrammed to multipotency by culture.”. STEM CELLS AND Development 20.12 (2011): 2053-2064.
This data publication is cited in the following publications:
This publication cites the following data publications:

19 Citations in Europe PMC

Data provided by Europe PubMed Central.

Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve.
Lang H, Xing Y, Brown LN, Samuvel DJ, Panganiban CH, Havens LT, Balasubramanian S, Wegner M, Krug EL, Barth JL., Sci Rep 5(), 2015
PMID: 26307538
Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.
Weber M, Apostolova G, Widera D, Mittelbronn M, Dechant G, Kaltschmidt B, Rohrer H., Stem Cells 33(2), 2015
PMID: 25331182
Morphologic and immunohistochemical features of malignant peripheral nerve sheath tumors and cellular schwannomas.
Pekmezci M, Reuss DE, Hirbe AC, Dahiya S, Gutmann DH, von Deimling A, Horvai AE, Perry A., Mod. Pathol. 28(2), 2015
PMID: 25189642
The neural crest, a multifaceted structure of the vertebrates.
Dupin E, Le Douarin NM., Birth Defects Res. C Embryo Today 102(3), 2014
PMID: 25219958
The stemness of neural crest cells and their derivatives.
Kunisada T, Tezulka K, Aoki H, Motohashi T., Birth Defects Res. C Embryo Today 102(3), 2014
PMID: 25219876
Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model.
Ganz J, Arie I, Buch S, Zur TB, Barhum Y, Pour S, Araidy S, Pitaru S, Offen D., PLoS ONE 9(6), 2014
PMID: 24945922
Culture bag systems for clinical applications of adult human neural crest-derived stem cells.
Greiner JF, Grunwald LM, Muller J, Sudhoff H, Widera D, Kaltschmidt C, Kaltschmidt B., Stem Cell Res Ther 5(2), 2014
PMID: 24629140
Adipose stromal cells contain phenotypically distinct adipogenic progenitors derived from neural crest.
Sowa Y, Imura T, Numajiri T, Takeda K, Mabuchi Y, Matsuzaki Y, Nishino K., PLoS ONE 8(12), 2013
PMID: 24391913
Tissue interactions in neural crest cell development and disease.
Takahashi Y, Sipp D, Enomoto H., Science 341(6148), 2013
PMID: 23970693
Nestin-Expressing Stem Cells Promote Nerve Growth in Long-Term 3-Dimensional Gelfoam®-Supported Histoculture.
Mii S, Uehara F, Yano S, Tran B, Miwa S, Hiroshima Y, Amoh Y, Katsuoka K, Hoffman RM., PLoS ONE 8(6), 2013
PMID: 23840607
Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells.
Widera D, Hauser S, Kaltschmidt C, Kaltschmidt B., Anat Res Int 2012(), 2012
PMID: 23082250
Sustained bFGF-release tubes for peripheral nerve regeneration: comparison with autograft.
Takagi T, Kimura Y, Shibata S, Saito H, Ishii K, Okano HJ, Toyama Y, Okano H, Tabata Y, Nakamura M., Plast. Reconstr. Surg. 130(4), 2012
PMID: 23018697
Autonomic neurocristopathy-associated mutations in PHOX2B dysregulate Sox10 expression.
Nagashimada M, Ohta H, Li C, Nakao K, Uesaka T, Brunet JF, Amiel J, Trochet D, Wakayama T, Enomoto H., J. Clin. Invest. 122(9), 2012
PMID: 22922260
Neural crest and olfactory system: new prospective.
Forni PE, Wray S., Mol. Neurobiol. 46(2), 2012
PMID: 22773137
Generation of Schwann cell-derived multipotent neurospheres isolated from intact sciatic nerve.
Martin I, Nguyen TD, Krell V, Greiner JF, Muller J, Hauser S, Heimann P, Widera D., Stem Cell Rev 8(4), 2012
PMID: 22664741
The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration.
Kim Y, Remacle AG, Chernov AV, Liu H, Shubayev I, Lai C, Dolkas J, Shiryaev SA, Golubkov VS, Mizisin AP, Strongin AY, Shubayev VI., PLoS ONE 7(3), 2012
PMID: 22438979

40 References

Data provided by Europe PubMed Central.

Re-entry into the cell cycle is required for bFGF-induced oligodendroglial dedifferentiation and survival.
Grinspan JB, Reeves MF, Coulaloglou MJ, Nathanson D, Pleasure D., J. Neurosci. Res. 46(4), 1996
PMID: 8950705
Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells.
Sharif A, Legendre P, Prevot V, Allet C, Romao L, Studler JM, Chneiweiss H, Junier MP., Oncogene 26(19), 2007
PMID: 17057735
Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina.
Fischer AJ, McGuire CR, Dierks BD, Reh TA., J. Neurosci. 22(21), 2002
PMID: 12417664
Production of neurospheres from mammalian Muller cells in culture.
Monnin J, Morand-Villeneuve N, Michel G, Hicks D, Versaux-Botteri C., Neurosci. Lett. 421(1), 2007
PMID: 17548159
Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia.
Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M., J. Neurosci. 27(32), 2007
PMID: 17687043
Directing astroglia from the cerebral cortex into subtype specific functional neurons.
Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M, Berninger B., PLoS Biol. 8(5), 2010
PMID: 20502524
Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos.
Le Lievre CS, Le Douarin NM., J Embryol Exp Morphol 34(1), 1975
PMID: 1185098
Oct4-induced pluripotency in adult neural stem cells.
Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR., Cell 136(3), 2009
PMID: 19203577
Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation.
Kohno R, Ikeda Y, Yonemitsu Y, Hisatomi T, Yamaguchi M, Miyazaki M, Takeshita H, Ishibashi T, Sueishi K., Brain Res. 1093(1), 2006
PMID: 16697356
Tumors of peripheral nerve origin: benign and malignant solitary schwannomas.
Das Gupta TK, Brasfield RD., CA Cancer J Clin 20(4), 1970
PMID: 4316984
Benign solitary Schwannomas (neurilemomas).
Das Gupta TK, Brasfield RD, Strong EW, Hajdu SI., Cancer 24(2), 1969
PMID: 5796779
Material in PUB:
Part of this Dissertation


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 21466279
PubMed | Europe PMC

Search this title in

Google Scholar