Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'

Wu ML, de Vries S, van Alen TA, Butler MK, Op den Camp HJM, Keltjens JT, Jetten MSM, Strous M (2011)
Microbiology 157(3): 890-898.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
The anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera' ('Ca. M. oxyfera') produces oxygen from nitrite by a novel pathway. The major part of the O-2 is used for methane activation and oxidation, which proceeds by the route well known for aerobic methanotrophs. Residual oxygen may serve other purposes, such as respiration. We have found that the genome of 'Ca. M. oxyfera' harbours four sets of genes encoding terminal respiratory oxidases: two cytochrome c oxidases, a third putative bo-type ubiquinol oxidase, and a cyanide-insensitive alternative oxidase. Illumine sequencing of reverse-transcribed total community RNA and quantitative real-time RT-PCR showed that all four sets of genes were transcribed, albeit at low levels. Oxygen-uptake and inhibition experiments, UV-visible absorption spectral characteristics and EPR spectroscopy of solubilized membranes showed that only one of the four oxidases is functionally produced by 'Ca. M. oxyfera', notably the membrane-bound bo-type terminal oxidase. These findings open a new role for terminal respiratory oxidases in anaerobic systems, and are an additional indication of the flexibility of terminal oxidases, of which the distribution among anaerobic micro-organisms may be largely underestimated.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Wu ML, de Vries S, van Alen TA, et al. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology. 2011;157(3):890-898.
Wu, M. L., de Vries, S., van Alen, T. A., Butler, M. K., Op den Camp, H. J. M., Keltjens, J. T., Jetten, M. S. M., et al. (2011). Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology, 157(3), 890-898.
Wu, M. L., de Vries, S., van Alen, T. A., Butler, M. K., Op den Camp, H. J. M., Keltjens, J. T., Jetten, M. S. M., and Strous, M. (2011). Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology 157, 890-898.
Wu, M.L., et al., 2011. Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology, 157(3), p 890-898.
M.L. Wu, et al., “Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'”, Microbiology, vol. 157, 2011, pp. 890-898.
Wu, M.L., de Vries, S., van Alen, T.A., Butler, M.K., Op den Camp, H.J.M., Keltjens, J.T., Jetten, M.S.M., Strous, M.: Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'. Microbiology. 157, 890-898 (2011).
Wu, Ming L., de Vries, Simon, van Alen, Theo A., Butler, Margaret K., Op den Camp, Huub J. M., Keltjens, Jan T., Jetten, Mike S. M., and Strous, Marc. “Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'”. Microbiology 157.3 (2011): 890-898.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

Anaerobic oxidation of methane: an "active" microbial process.
Cui M, Ma A, Qi H, Zhuang X, Zhuang G., Microbiologyopen 4(1), 2015
PMID: 25530008
Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems.
Zhu G, Zhou L, Wang Y, Wang S, Guo J, Long XE, Sun X, Jiang B, Hou Q, Jetten MS, Yin C., Environ Microbiol Rep 7(1), 2015
PMID: 25223900
The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.
Ducluzeau AL, Schoepp-Cothenet B, van Lis R, Baymann F, Russell MJ, Nitschke W., J R Soc Interface 11(98), 2014
PMID: 24968694
Multiple Rieske/cytb complexes in a single organism.
ten Brink F, Schoepp-Cothenet B, van Lis R, Nitschke W, Baymann F., Biochim. Biophys. Acta 1827(11-12), 2013
PMID: 23507620
Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis.
Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS., Environ. Microbiol. 14(4), 2012
PMID: 22221911
Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium.
Wu ML, van Teeseling MC, Willems MJ, van Donselaar EG, Klingl A, Rachel R, Geerts WJ, Jetten MS, Strous M, van Niftrik L., J. Bacteriol. 194(2), 2012
PMID: 22020652
Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake.
Deutzmann JS, Schink B., Appl. Environ. Microbiol. 77(13), 2011
PMID: 21551281
A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.
Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L., Biochem. Soc. Trans. 39(1), 2011
PMID: 21265781

35 References

Data provided by Europe PubMed Central.

A microbial consortium couples anaerobic methane oxidation to denitrification.
Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M., Nature 440(7086), 2006
PMID: 16612380
Confidence Limits on Phylogenies: An Approach Using the Bootstrap
Felsenstein, Evolution 39(4), 1985
The heme groups of cytochrome o from Escherichia coli.
Puustinen A, Wikstrom M., Proc. Natl. Acad. Sci. U.S.A. 88(14), 1991
PMID: 2068092
Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins released by Pseudomonas.
Voggu L, Schlag S, Biswas R, Rosenstein R, Rausch C, Gotz F., J. Bacteriol. 188(23), 2006
PMID: 17108291
The biochemistry of methane oxidation.
Hakemian AS, Rosenzweig AC., Annu. Rev. Biochem. 76(), 2007
PMID: 17328677
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein.
Moore AL, Carre JE, Affourtit C, Albury MS, Crichton PG, Kita K, Heathcote P., Biochim. Biophys. Acta 1777(4), 2008
PMID: 18243125
Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M., Environ. Microbiol. 10(11), 2008
PMID: 18721142
Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids.
Schonbaum GR, Bonner WD Jr, Storey BT, Bahr JT., Plant Physiol. 47(1), 1971
PMID: 5543780

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21071492
PubMed | Europe PMC

Search this title in

Google Scholar