Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean

Margaret I, Becker A, Blom J, Bonilla I, Goesmann A, Göttfert M, Lloret J, Mittard-Runte V, Rückert C, Ruiz-Sainz J-E, Vinardell JM, et al. (2011)
Journal of Biotechnology 155(1): 11-19.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Glycine max (soybean) plants can be nodulated by fast-growing rhizobial strains of the genus Sinorhizobium as well as by slow-growing strains clustered in the genus Bradyrhizobium. Fast-growing rhizobia strains with different soybean cultivar specificities have been isolated from Chinese soils and from other geographical regions. Most of these strains have been clustered into the species Sinorhizobium fredii. The S. fredii strain HH103 was isolated from soils of Hubei province, Central China and was first described in 1985. This strain is capable to nodulate American and Asiatic soybean cultivars and many other different legumes and is so far the best studied fast-growing soybean-nodulating strain. Additionally to the chromosome S. fredii HH103 carries five indigenous plasmids. The largest plasmid (pSfrHH103e) harbours genes for the production of diverse surface polysaccharides, such as exopolysaccharides (EPS), lipopolysaccharides (LPS), and capsular polysaccharides (KPS). The second largest plasmid (pSfrHH103d) is a typical symbiotic plasmid (pSym), carrying nodulation and nitrogen fixation genes. The present mini review focuses on symbiotic properties of S. fredii HH103, in particular on nodulation and surface polysaccharides aspects. The model strain S. fredii HH103 was chosen for genomic sequencing, which is currently in progress. First analyses of the draft genome sequence revealed an extensive synteny between the chromosomes of S. fredii HH103 and Rhizobium sp. NGR234.
Publishing Year
ISSN
PUB-ID

Cite this

Margaret I, Becker A, Blom J, et al. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology. 2011;155(1):11-19.
Margaret, I., Becker, A., Blom, J., Bonilla, I., Goesmann, A., Göttfert, M., Lloret, J., et al. (2011). Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology, 155(1), 11-19. doi:10.1016/j.jbiotec.2011.03.016
Margaret, I., Becker, A., Blom, J., Bonilla, I., Goesmann, A., Göttfert, M., Lloret, J., Mittard-Runte, V., Rückert, C., Ruiz-Sainz, J. - E., et al. (2011). Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology 155, 11-19.
Margaret, I., et al., 2011. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology, 155(1), p 11-19.
I. Margaret, et al., “Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean”, Journal of Biotechnology, vol. 155, 2011, pp. 11-19.
Margaret, I., Becker, A., Blom, J., Bonilla, I., Goesmann, A., Göttfert, M., Lloret, J., Mittard-Runte, V., Rückert, C., Ruiz-Sainz, J.-E., Vinardell, J.M., Weidner, S.: Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. Journal of Biotechnology. 155, 11-19 (2011).
Margaret, Isabel, Becker, Anke, Blom, Jochen, Bonilla, Ildefonso, Goesmann, Alexander, Göttfert, Michael, Lloret, Javier, Mittard-Runte, Virginie, Rückert, Christian, Ruiz-Sainz, José-Enrique, Vinardell, José Maria, and Weidner, Stefan. “Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean”. Journal of Biotechnology 155.1 (2011): 11-19.
This data publication is cited in the following publications:
This publication cites the following data publications:

23 Citations in Europe PMC

Data provided by Europe PubMed Central.

The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants.
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ., Appl Environ Microbiol 83(5), 2017
PMID: 27986730
Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts.
Le Quéré A, Tak N, Gehlot HS, Lavire C, Meyer T, Chapulliot D, Rathi S, Sakrouhi I, Rocha G, Rohmer M, Severac D, Filali-Maltouf A, Munive JA., BMC Genomics 18(1), 2017
PMID: 28088165
A novel symbiovar (aegeanense) of the genus Ensifer nodulates Vigna unguiculata.
Tampakaki AP, Fotiadis CT, Ntatsi G, Savvas D., J Sci Food Agric 97(13), 2017
PMID: 28220509
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose.
Jiménez-Guerrero I, Acosta-Jurado S, Del Cerro P, Navarro-Gómez P, López-Baena FJ, Ollero FJ, Vinardell JM, Pérez-Montaño F., Genes (Basel) 9(1), 2017
PMID: 29267254
Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis.
Crespo-Rivas JC, Guefrachi I, Mok KC, Villaécija-Aguilar JA, Acosta-Jurado S, Pierre O, Ruiz-Sainz JE, Taga ME, Mergaert P, Vinardell JM., Environ Microbiol 18(8), 2016
PMID: 26521863
Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis.
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM., Int J Mol Sci 17(5), 2016
PMID: 27213334
RNA-Seq Analysis of Differential Gene Expression Responding to Different Rhizobium Strains in Soybean (Glycine max) Roots.
Yuan S, Li R, Chen S, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Yang Z, Qiu D, Zhang X, Zhou X., Front Plant Sci 7(), 2016
PMID: 27303417
Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner.
Acosta-Jurado S, Navarro-Gómez P, Murdoch Pdel S, Crespo-Rivas JC, Jie S, Cuesta-Berrio L, Ruiz-Sainz JE, Rodríguez-Carvajal MÁ, Vinardell JM., PLoS One 11(8), 2016
PMID: 27486751
A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis.
Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM., Sci Rep 6(), 2016
PMID: 27539649
Sinorhizobium fredii HH103 Invades Lotus burttii by Crack Entry in a Nod Factor-and Surface Polysaccharide-Dependent Manner.
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Perea JF, Gil-Serrano A, Jin H, An Q, Rodríguez-Carvajal MA, Andersen SU, Sandal N, Stougaard J, Vinardell JM, Ruiz-Sainz JE., Mol Plant Microbe Interact 29(12), 2016
PMID: 27827003
The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean.
Vinardell JM, Acosta-Jurado S, Zehner S, Göttfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Pérez-Montaño F, Schneiker-Bekel S, Serranía J, Szczepanowski R, Buendía AM, Lloret J, Bonilla I, Pühler A, Ruiz-Sainz JE, Weidner S., Mol Plant Microbe Interact 28(7), 2015
PMID: 25675256
The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean.
Jiménez-Guerrero I, Pérez-Montaño F, Monreal JA, Preston GM, Fones H, Vioque B, Ollero FJ, López-Baena FJ., Mol Plant Microbe Interact 28(7), 2015
PMID: 25775271
NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103.
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ., PLoS One 10(11), 2015
PMID: 26569401
Phylogenetic diversity of Mesorhizobium in chickpea.
Kim DH, Kaashyap M, Rathore A, Das RR, Parupalli S, Upadhyaya HD, Gopalakrishnan S, Gaur PM, Singh S, Kaur J, Yasin M, Varshney RK., J Biosci 39(3), 2014
PMID: 24845514
Structure and biological roles of Sinorhizobium fredii HH103 exopolysaccharide.
Rodríguez-Navarro DN, Rodríguez-Carvajal MA, Acosta-Jurado S, Soto MJ, Margaret I, Crespo-Rivas JC, Sanjuan J, Temprano F, Gil-Serrano A, Ruiz-Sainz JE, Vinardell JM., PLoS One 9(12), 2014
PMID: 25521500
The Sinorhizobium fredii HH103 lipopolysaccharide is not only relevant at early soybean nodulation stages but also for symbiosome stability in mature nodules.
Margaret I, Lucas MM, Acosta-Jurado S, Buendía-Clavería AM, Fedorova E, Hidalgo Á, Rodríguez-Carvajal MA, Rodriguez-Navarro DN, Ruiz-Sainz JE, Vinardell JM., PLoS One 8(10), 2013
PMID: 24098345
Genome sequence of the soybean symbiont Sinorhizobium fredii HH103.
Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I, Pühler A, Ruiz-Sainz JE, Schneiker-Bekel S, Szczepanowski R, Vinardell JM, Zehner S, Göttfert M., J Bacteriol 194(6), 2012
PMID: 22374952
A set of Lotus japonicus Gifu x Lotus burttii recombinant inbred lines facilitates map-based cloning and QTL mapping.
Sandal N, Jin H, Rodriguez-Navarro DN, Temprano F, Cvitanich C, Brachmann A, Sato S, Kawaguchi M, Tabata S, Parniske M, Ruiz-Sainz JE, Andersen SU, Stougaard J., DNA Res 19(4), 2012
PMID: 22619310
Sinorhizobium fredii HH103 rkp-3 genes are required for K-antigen polysaccharide biosynthesis, affect lipopolysaccharide structure and are essential for infection of legumes forming determinate nodules.
Margaret I, Crespo-Rivas JC, Acosta-Jurado S, Buendía-Clavería AM, Cubo MT, Gil-Serrano A, Moreno J, Murdoch PS, Rodríguez-Carvajal MA, Rodríguez-Navarro DN, Ruiz-Sainz JE, Sanjuán J, Soto MJ, Vinardell JM., Mol Plant Microbe Interact 25(6), 2012
PMID: 22397406

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21458507
PubMed | Europe PMC

Search this title in

Google Scholar