Langevin equation for a system nonlinearly coupled to a heat bath

Evstigneev M, Reimann P (2010)
Physical Review B 82(22): 224303.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Direct molecular dynamics simulations of multiatomic systems, such as adsorbed atoms or clusters on crystalline surface, surface-atom scattering, atomic friction, etc., are known to have severe time-scale and size limitations. Therefore, an alternative approach based on Langevin dynamics is often used. In this work, we derive the generalized Langevin equation for a system in contact with a heat bath. In contrast to the previous treatments focusing on linear system-bath coupling, we consider a general case where the corresponding interaction potential has an arbitrary functional form, but is weak in comparison to the coupling between the bath particles. The validity of our results is demonstrated on two simple models.
Erscheinungsjahr
Zeitschriftentitel
Physical Review B
Band
82
Zeitschriftennummer
22
Artikelnummer
224303
ISSN
eISSN
PUB-ID

Zitieren

Evstigneev M, Reimann P. Langevin equation for a system nonlinearly coupled to a heat bath. Physical Review B. 2010;82(22): 224303.
Evstigneev, M., & Reimann, P. (2010). Langevin equation for a system nonlinearly coupled to a heat bath. Physical Review B, 82(22), 224303. doi:10.1103/PhysRevB.82.224303
Evstigneev, M., and Reimann, P. (2010). Langevin equation for a system nonlinearly coupled to a heat bath. Physical Review B 82:224303.
Evstigneev, M., & Reimann, P., 2010. Langevin equation for a system nonlinearly coupled to a heat bath. Physical Review B, 82(22): 224303.
M. Evstigneev and P. Reimann, “Langevin equation for a system nonlinearly coupled to a heat bath”, Physical Review B, vol. 82, 2010, : 224303.
Evstigneev, M., Reimann, P.: Langevin equation for a system nonlinearly coupled to a heat bath. Physical Review B. 82, : 224303 (2010).
Evstigneev, Mykhaylo, and Reimann, Peter. “Langevin equation for a system nonlinearly coupled to a heat bath”. Physical Review B 82.22 (2010): 224303.