Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance

Karg M, Lu Y, Carbo-Argibay E, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM, Hellweg T (2009)
Langmuir 25(5): 3163-3167.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
This work describes the control and manipulation of the optical properties of multiresponsive organic/inorganic hybrid colloids, which consist of thermo-responsive poly-(NIPAM-co-allylacctic acid) microgel cores and gold nanorods assembled on their surface. These composites are multifunctional, in the sense that they combine the interesting optical properties of the rod-shaped gold particles-exhibiting two well-differentiated plasmon modes-with the sensitivity of the copolymer microgel toward external stimuli, such is temperature or solution pH. It is shown that the collapse of the microgel core, induced by changes in either temperature or pH, enhances the electronic interactions between the gold nanorods on the gel surface, as a result of the subsequent increase of the packing density arising from the surface decrease of the collapsed microgel. Above a certain nanorod density, such interactions lead to remarkable red-shifts of the longitudinal plasmon resonance.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Karg M, Lu Y, Carbo-Argibay E, et al. Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir. 2009;25(5):3163-3167.
Karg, M., Lu, Y., Carbo-Argibay, E., Pastoriza-Santos, I., Perez-Juste, J., Liz-Marzan, L. M., & Hellweg, T. (2009). Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 25(5), 3163-3167.
Karg, M., Lu, Y., Carbo-Argibay, E., Pastoriza-Santos, I., Perez-Juste, J., Liz-Marzan, L. M., and Hellweg, T. (2009). Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir 25, 3163-3167.
Karg, M., et al., 2009. Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 25(5), p 3163-3167.
M. Karg, et al., “Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance”, Langmuir, vol. 25, 2009, pp. 3163-3167.
Karg, M., Lu, Y., Carbo-Argibay, E., Pastoriza-Santos, I., Perez-Juste, J., Liz-Marzan, L.M., Hellweg, T.: Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir. 25, 3163-3167 (2009).
Karg, Matthias, Lu, Yan, Carbo-Argibay, Enrique, Pastoriza-Santos, Isabel, Perez-Juste, Jorge, Liz-Marzan, Luis M., and Hellweg, Thomas. “Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance”. Langmuir 25.5 (2009): 3163-3167.
This data publication is cited in the following publications:
This publication cites the following data publications:

8 Citations in Europe PMC

Data provided by Europe PubMed Central.

Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release.
Liu J, Detrembleur C, Debuigne A, De Pauw-Gillet MC, Mornet S, Vander Elst L, Laurent S, Labrugere C, Duguet E, Jerome C., Nanoscale 5(23), 2013
PMID: 24091428
Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties.
Gawlitza K, Turner ST, Polzer F, Wellert S, Karg M, Mulvaney P, von Klitzing R., Phys Chem Chem Phys 15(37), 2013
PMID: 23942792
Quadruple-responsive nanocomposite based on dextran-PMAA-PNIPAM, iron oxide nanoparticles, and gold nanorods.
Feng W, Lv W, Qi J, Zhang G, Zhang F, Fan X., Macromol Rapid Commun 33(2), 2012
PMID: 22102518
Triggering the volume phase transition of core-shell Au nanorod-microgel nanocomposites with light.
Rodriguez-Fernandez J, Fedoruk M, Hrelescu C, Lutich AA, Feldmann J., Nanotechnology 22(24), 2011
PMID: 21543835
Versatile phase transfer of gold nanoparticles from aqueous media to different organic media.
Karg M, Schelero N, Oppel C, Gradzielski M, Hellweg T, von Klitzing R., Chemistry 17(16), 2011
PMID: 21433128

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19437719
PubMed | Europe PMC

Search this title in

Google Scholar