Identification of three urease accessory proteins that are required for urease activation in Arabidopsis

Witte C-P, Rosso MG, Romeis T (2005)
Plant Physiology 139(3): 1155-1162.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
Urease is a nickel-containing urea hydrolase involved in nitrogen recycling from ureide, purine, and arginine catabolism in plants. The process of urease activation by incorporation of nickel into the active site is a prime example of chaperone-mediated metal transfer to an enzyme. Four urease accessory proteins are required for activation in Klebsiella aerogenes. In plants urease accessory proteins have so far been only partially defined. Using reverse genetic tools we identified four genes that are necessary for urease activity in Arabidopsis (Arabidopsis thaliana; ecotypes Columbia and Nössen). Plants bearing T-DNA or Ds element insertions in either the structural gene for urease or in any of the three putative urease accessory genes AtureD, AtureF, and AtureG lacked the corresponding mRNAs and were defective in urease activity. In contrast to wild-type plants, the mutant lines were not able to support growth with urea as the sole nitrogen source. To investigate whether the identified accessory proteins would be sufficient to support eukaryotic urease activation, the corresponding cDNAs were introduced into urease-negative Escherichia coli. In these bacteria, urease activity was observed only when all three plant accessory genes were coexpressed together with the plant urease gene. Remarkably, plant urease activation occurred as well in cell-free E. coli extracts, but only in extracts from cells that had expressed all three accessory proteins. The future molecular dissection of the plant urease activation process may therefore be performed in vitro, providing a powerful tool to further our understanding of the biochemistry of chaperone-mediated metal transfer processes in plants.
Erscheinungsjahr
Zeitschriftentitel
Plant Physiology
Band
139
Zeitschriftennummer
3
Seite
1155-1162
ISSN
eISSN
PUB-ID

Zitieren

Witte C-P, Rosso MG, Romeis T. Identification of three urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiology. 2005;139(3):1155-1162.
Witte, C. - P., Rosso, M. G., & Romeis, T. (2005). Identification of three urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiology, 139(3), 1155-1162. doi:10.1104/pp.105.070292
Witte, C. - P., Rosso, M. G., and Romeis, T. (2005). Identification of three urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiology 139, 1155-1162.
Witte, C.-P., Rosso, M.G., & Romeis, T., 2005. Identification of three urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiology, 139(3), p 1155-1162.
C.-P. Witte, M.G. Rosso, and T. Romeis, “Identification of three urease accessory proteins that are required for urease activation in Arabidopsis”, Plant Physiology, vol. 139, 2005, pp. 1155-1162.
Witte, C.-P., Rosso, M.G., Romeis, T.: Identification of three urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiology. 139, 1155-1162 (2005).
Witte, Claus-Peter, Rosso, Mario G., and Romeis, Tina. “Identification of three urease accessory proteins that are required for urease activation in Arabidopsis”. Plant Physiology 139.3 (2005): 1155-1162.

35 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Gastrodia elata genome provides insights into plant adaptation to heterotrophy.
Yuan Y, Jin X, Liu J, Zhao X, Zhou J, Wang X, Wang D, Lai C, Xu W, Huang J, Zha L, Liu D, Ma X, Wang L, Zhou M, Jiang Z, Meng H, Peng H, Liang Y, Li R, Jiang C, Zhao Y, Nan T, Jin Y, Zhan Z, Yang J, Jiang W, Huang L., Nat Commun 9(1), 2018
PMID: 29691383
Biochemical and genetic analyses of the oomycete Pythium insidiosum provide new insights into clinical identification and urease-based evolution of metabolism-related traits.
Krajaejun T, Rujirawat T, Kanpanleuk T, Santanirand P, Lohnoo T, Yingyong W, Kumsang Y, Sae-Chew P, Kittichotirat W, Patumcharoenpol P., PeerJ 6(), 2018
PMID: 29888122
m6A RNA Degradation Products Are Catabolized by an Evolutionarily Conserved N6-Methyl-AMP Deaminase in Plant and Mammalian Cells.
Chen M, Urs MJ, Sánchez-González I, Olayioye MA, Herde M, Witte CP., Plant Cell 30(7), 2018
PMID: 29884623
Characterization of maize leaf pyruvate orthophosphate dikinase using high throughput sequencing.
Zhang Y, Giuliani R, Zhang Y, Zhang Y, Araujo WL, Wang B, Liu P, Sun Q, Cousins A, Edwards G, Fernie A, Brutnell TP, Li P., J Integr Plant Biol 60(8), 2018
PMID: 29664234
Biochemical and genetic analyses of N metabolism in maize testcross seedlings: 1. Leaves.
Trucillo Silva I, Abbaraju HKR, Fallis LP, Liu H, Lee M, Dhugga KS., Theor Appl Genet 130(7), 2017
PMID: 28444412
Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress.
Haley ST, Alexander H, Juhl AR, Dyhrman ST., Harmful Algae 68(), 2017
PMID: 28962986
Coprophagous features in carnivorous Nepenthes plants: a task for ureases.
Yilamujiang A, Zhu A, Ligabue-Braun R, Bartram S, Witte CP, Hedrich R, Hasabe M, Schöner CR, Schöner MG, Kerth G, Carlini CR, Mithöfer A., Sci Rep 7(1), 2017
PMID: 28912541
Glutaredoxin GRXS17 Associates with the Cytosolic Iron-Sulfur Cluster Assembly Pathway.
Iñigo S, Durand AN, Ritter A, Le Gall S, Termathe M, Klassen R, Tohge T, De Coninck B, Van Leene J, De Clercq R, Cammue BP, Fernie AR, Gevaert K, De Jaeger G, Leidel SA, Schaffrath R, Van Lijsebettens M, Pauwels L, Goossens A., Plant Physiol 172(2), 2016
PMID: 27503603
Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast.
Bohner A, Kojima S, Hajirezaei M, Melzer M, von Wirén N., Plant J 81(3), 2015
PMID: 25440717
Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.
Bu Y, Kou J, Sun B, Takano T, Liu S., FEBS Lett 589(12), 2015
PMID: 25907538
High and Low Affinity Urea Root Uptake: Involvement of NIP5;1.
Yang H, Menz J, Häussermann I, Benz M, Fujiwara T, Ludewig U., Plant Cell Physiol 56(8), 2015
PMID: 25957355
Physiological implications of arginine metabolism in plants.
Winter G, Todd CD, Trovato M, Forlani G, Funck D., Front Plant Sci 6(), 2015
PMID: 26284079
Factors required for activation of urease as a virulence determinant in Cryptococcus neoformans.
Singh A, Panting RJ, Varma A, Saijo T, Waldron KJ, Jong A, Ngamskulrungroj P, Chang YC, Rutherford JC, Kwon-Chung KJ., MBio 4(3), 2013
PMID: 23653445
The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice.
Werner AK, Medina-Escobar N, Zulawski M, Sparkes IA, Cao FQ, Witte CP., Plant Physiol 163(2), 2013
PMID: 23940254
Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein.
Real-Guerra R, Staniscuaski F, Zambelli B, Musiani F, Ciurli S, Carlini CR., Plant Mol Biol 78(4-5), 2012
PMID: 22271305
Urea metabolism in plants.
Witte CP., Plant Sci 180(3), 2011
PMID: 21421389
Urea metabolism in plants
Witte CP., Plant Sci 180(3), 2011
PMID: IND44484692
Mutational analysis of the major soybean UreF paralogue involved in urease activation.
Polacco JC, Hyten DL, Medeiros-Silva M, Sleper DA, Bilyeu KD., J Exp Bot 62(10), 2011
PMID: 21430294
Identification and characterization of proteins involved in rice urea and arginine catabolism.
Cao FQ, Werner AK, Dahncke K, Romeis T, Liu LH, Witte CP., Plant Physiol 154(1), 2010
PMID: 20631318
TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana.
Soto G, Fox R, Ayub N, Alleva K, Guaimas F, Erijman EJ, Mazzella A, Amodeo G, Muschietti J., Plant J 64(6), 2010
PMID: 21143683
Interplay of metal ions and urease.
Carter EL, Flugga N, Boer JL, Mulrooney SB, Hausinger RP., Metallomics 1(3), 2009
PMID: 20046957
SQUAMOSA Promoter Binding Protein-Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis.
Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T., Plant Cell 21(1), 2009
PMID: 19122104
Homeostasis of the micronutrients Ni, Mo and Cl with specific biochemical functions.
Tejada-Jiménez M, Galván A, Fernández E, Llamas A., Curr Opin Plant Biol 12(3), 2009
PMID: 19487155
Insights into the role and structure of plant ureases.
Follmer C., Phytochemistry 69(1), 2008
PMID: 17706733
Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants.
Mérigout P, Lelandais M, Bitton F, Renou JP, Briand X, Meyer C, Daniel-Vedele F., Plant Physiol 147(3), 2008
PMID: 18508958
Molecular and physiological aspects of urea transport in higher plants
Wang Wei-Hong, Köhler Barbara, Cao Feng-Qiu, Liu Lai-Hua., Plant Sci 175(4), 2008
PMID: IND44095777

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16244137
PubMed | Europe PMC

Suchen in

Google Scholar