Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes

Rhinow D, Büenfeld M, Weber N-E, Beyer A, Gölzhäuser A, Kühlbrandt W, Hampp N, Turchanin A (2011)
Ultramicroscopy 111(5): 342-349.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Publishing Year
ISSN
PUB-ID

Cite this

Rhinow D, Büenfeld M, Weber N-E, et al. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy. 2011;111(5):342-349.
Rhinow, D., Büenfeld, M., Weber, N. - E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., Hampp, N., et al. (2011). Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy, 111(5), 342-349.
Rhinow, D., Büenfeld, M., Weber, N. - E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., Hampp, N., and Turchanin, A. (2011). Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy 111, 342-349.
Rhinow, D., et al., 2011. Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy, 111(5), p 342-349.
D. Rhinow, et al., “Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes”, Ultramicroscopy, vol. 111, 2011, pp. 342-349.
Rhinow, D., Büenfeld, M., Weber, N.-E., Beyer, A., Gölzhäuser, A., Kühlbrandt, W., Hampp, N., Turchanin, A.: Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes. Ultramicroscopy. 111, 342-349 (2011).
Rhinow, Daniel, Büenfeld, Matthias, Weber, Nils-Eike, Beyer, André, Gölzhäuser, Armin, Kühlbrandt, Werner, Hampp, Norbert, and Turchanin, Andrey. “Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes”. Ultramicroscopy 111.5 (2011): 342-349.
This data publication is cited in the following publications:
This publication cites the following data publications:

5 Citations in Europe PMC

Data provided by Europe PubMed Central.

Progress towards an optimal specimen support for electron cryomicroscopy.
Russo CJ, Passmore LA., Curr. Opin. Struct. Biol. 37(), 2016
PMID: 26774849
Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports.
Meyerson JR, Rao P, Kumar J, Chittori S, Banerjee S, Pierson J, Mayer ML, Subramaniam S., Sci Rep 4(), 2014
PMID: 25403871
Practical aspects of Boersch phase contrast electron microscopy of biological specimens.
Walter A, Muzik H, Vieker H, Turchanin A, Beyer A, Golzhauser A, Lacher M, Steltenkamp S, Schmitz S, Holik P, Kuhlbrandt W, Rhinow D., Ultramicroscopy 116(), 2012
PMID: 22537744
Oxidative doping renders graphene hydrophilic, facilitating its use as a support in biological TEM.
Pantelic RS, Suk JW, Hao Y, Ruoff RS, Stahlberg H., Nano Lett. 11(10), 2011
PMID: 21910506

38 References

Data provided by Europe PubMed Central.

Imaging and dynamics of light atoms and molecules on graphene.
Meyer JC, Girit CO, Crommie MF, Zettl A., Nature 454(7202), 2008
PMID: 18633414
Quantitative EFTEM mapping of near physiological calcium concentrations in biological specimens.
Aronova MA, Kim YC, Pivovarova NB, Andrews SB, Leapman RD., Ultramicroscopy 109(3), 2009
PMID: 19118952
Electron energy-loss spectroscopy in the TEM
Egerton, Reports on Progress in Physics 72(1), 2009
One Nanometer Thin Carbon Nanosheets with Tunable Conductivity and Stiffness
Turchanin, Advanced Materials 21(12), 2009
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375
The advent of near-atomic resolution in single-particle electron microscopy.
Cheng Y, Walz T., Annu. Rev. Biochem. 78(), 2009
PMID: 19489732
Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy.
Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J., ACS Nano 3(9), 2009
PMID: 19689122
Direct e-beam writing of 1 nm thin carbon nanoribbons
Nottbohm, Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures 27(6), 2009
Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples.
Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM., J. Struct. Biol. 170(1), 2010
PMID: 20035878
Comparison of EFTEM and STEM EELS plasmon imaging of gold nanoparticles in a monochromated TEM
Schaffer, Ultramicroscopy 110(8), 2010
Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.
Rhinow D, Vonck J, Schranz M, Beyer A, Golzhauser A, Hampp N., Phys Chem Chem Phys 12(17), 2010
PMID: 20407705
Fabrication of metal patterns on freestanding graphenoid nanomembranes
Beyer, Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures 28(6), 2010

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21329648
PubMed | Europe PMC

arXiv 1110.1244

Search this title in

Google Scholar