Adaptive relevance matrices in learning vector quantization

Schneider P, Biehl M, Hammer B (2009)
Neural Computation 21(12): 3532-3561.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Schneider P, Biehl M, Hammer B. Adaptive relevance matrices in learning vector quantization. Neural Computation. 2009;21(12):3532-3561.
Schneider, P., Biehl, M., & Hammer, B. (2009). Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12), 3532-3561.
Schneider, P., Biehl, M., and Hammer, B. (2009). Adaptive relevance matrices in learning vector quantization. Neural Computation 21, 3532-3561.
Schneider, P., Biehl, M., & Hammer, B., 2009. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21(12), p 3532-3561.
P. Schneider, M. Biehl, and B. Hammer, “Adaptive relevance matrices in learning vector quantization”, Neural Computation, vol. 21, 2009, pp. 3532-3561.
Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation. 21, 3532-3561 (2009).
Schneider, P., Biehl, M., and Hammer, Barbara. “Adaptive relevance matrices in learning vector quantization”. Neural Computation 21.12 (2009): 3532-3561.
This data publication is cited in the following publications:
This publication cites the following data publications:

11 Citations in Europe PMC

Data provided by Europe PubMed Central.

Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis.
Yeo L, Adlard N, Biehl M, Juarez M, Smallie T, Snow M, Buckley CD, Raza K, Filer A, Scheel-Toellner D., Ann. Rheum. Dis. 75(4), 2016
PMID: 25858640
Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.
Boareto M, Cesar J, Leite VB, Caticha N., IEEE/ACM Trans Comput Biol Bioinform 12(3), 2015
PMID: 26357281
Inter-species prediction of protein phosphorylation in the sbv IMPROVER species translation challenge.
Biehl M, Sadowski P, Bhanot G, Bilal E, Dayarian A, Meyer P, Norel R, Rhrissorrakrai K, Zeller MD, Hormoz S., Bioinformatics 31(4), 2015
PMID: 24994890
Classification of small lesions on dynamic breast MRI: Integrating dimension reduction and out-of-sample extension into CADx methodology.
Nagarajan MB, Huber MB, Schlossbauer T, Leinsinger G, Krol A, Wismuller A., Artif Intell Med 60(1), 2014
PMID: 24355697
Incorporating privileged information through metric learning.
Fouad S, Tino P, Raychaudhury S, Schneider P., IEEE Trans Neural Netw Learn Syst 24(7), 2013
PMID: 24808523
Analysis of flow cytometry data by matrix relevance learning vector quantization.
Biehl M, Bunte K, Schneider P., PLoS ONE 8(3), 2013
PMID: 23527184
Texture feature ranking with relevance learning to classify interstitial lung disease patterns.
Huber MB, Bunte K, Nagarajan MB, Biehl M, Ray LA, Wismuller A., Artif Intell Med 56(2), 2012
PMID: 23010586
Adaptive metric learning vector quantization for ordinal classification.
Fouad S, Tino P., Neural Comput 24(11), 2012
PMID: 22920847
Urine steroid metabolomics as a biomarker tool for detecting malignancy in adrenal tumors.
Arlt W, Biehl M, Taylor AE, Hahner S, Libe R, Hughes BA, Schneider P, Smith DJ, Stiekema H, Krone N, Porfiri E, Opocher G, Bertherat J, Mantero F, Allolio B, Terzolo M, Nightingale P, Shackleton CH, Bertagna X, Fassnacht M, Stewart PM., J. Clin. Endocrinol. Metab. 96(12), 2011
PMID: 21917861
Regularization in matrix relevance learning.
Schneider P, Bunte K, Stiekema H, Hammer B, Villmann T, Biehl M., IEEE Trans Neural Netw 21(5), 2010
PMID: 20236882

12 References

Data provided by Europe PubMed Central.


ledoux, 1991

rätsch, 2004
Unsupervised optimal fuzzy clustering
Gath, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 1989
Generalized relevance learning vector quantization.
Hammer B, Villmann T., Neural Netw 15(8-9), 2002
PMID: 12416694
Soft nearest prototype classification.
Seo S, Bode M, Obermayer K., IEEE Trans Neural Netw 14(2), 2003
PMID: 18238021
Learning vector quantization: The dynamics of winner-takes-all algorithms
BIEHL, Neurocomputing 69(7-9), 2006
Performance analysis of LVQ algorithms: a statistical physics approach.
Ghosh A, Biehl M, Hammer B., Neural Netw 19(6-7), 2006
PMID: 16781845
Rademacher and Gaussian Complexities: Risk Bounds and Structural Results
Bartlett, Journal of Machine Learning Research 3(3), 2003
Soft learning vector quantization.
Seo S, Obermayer K., Neural Comput 15(7), 2003
PMID: 12816567
On the Goldstein-Levitin-Polyak gradient projection method
Bertsekas, IEEE Transactions on Automatic Control 21(2), 1976
Supervised Neural Gas with General Similarity Measure
Hammer, Neural Processing Letters 21(1), 2005
On the Generalization Ability of GRLVQ Networks
Hammer, Neural Processing Letters 21(2), 2005

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19764875
PubMed | Europe PMC

Search this title in

Google Scholar