Batch and Median Neural Gas

Cottrell M, Hammer B, Hasenfuss A, Villmann T (2006)
Neural Networks 19(6-7): 762-771.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ;
Publishing Year
ISSN
PUB-ID

Cite this

Cottrell M, Hammer B, Hasenfuss A, Villmann T. Batch and Median Neural Gas. Neural Networks. 2006;19(6-7):762-771.
Cottrell, M., Hammer, B., Hasenfuss, A., & Villmann, T. (2006). Batch and Median Neural Gas. Neural Networks, 19(6-7), 762-771. doi:10.1016/j.neunet.2006.05.018
Cottrell, M., Hammer, B., Hasenfuss, A., and Villmann, T. (2006). Batch and Median Neural Gas. Neural Networks 19, 762-771.
Cottrell, M., et al., 2006. Batch and Median Neural Gas. Neural Networks, 19(6-7), p 762-771.
M. Cottrell, et al., “Batch and Median Neural Gas”, Neural Networks, vol. 19, 2006, pp. 762-771.
Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and Median Neural Gas. Neural Networks. 19, 762-771 (2006).
Cottrell, M., Hammer, Barbara, Hasenfuss, A., and Villmann, T. “Batch and Median Neural Gas”. Neural Networks 19.6-7 (2006): 762-771.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Knowledge extraction from a nitrification denitrification wastewater treatment plant using SOM-NG algorithm.
Machón-González I, Rodríguez-Iglesias J, López-García H, Castrillón-Peláez L, Marañón-Maison E., Environ Technol 38(12), 2017
PMID: 27681161
Prototype-based models in machine learning.
Biehl M, Hammer B, Villmann T., Wiley Interdiscip Rev Cogn Sci 7(2), 2016
PMID: 26800334
Comparing feed-forward versus neural gas as estimators: application to coke wastewater treatment.
Machón-González I, López-García H, Rodríguez-Iglesias J, Marañón-Maison E, Castrillón-Peláez L, Fernández-Nava Y., Environ Technol 34(9-12), 2013
PMID: 24191445
Linear time relational prototype based learning.
Gisbrecht A, Mokbel B, Schleif FM, Zhu X, Hammer B., Int J Neural Syst 22(5), 2012
PMID: 22931439
Local matrix learning in clustering and applications for manifold visualization.
Arnonkijpanich B, Hasenfuss A, Hammer B., Neural Netw 23(4), 2010
PMID: 20056379
Topographic mapping of large dissimilarity data sets.
Hammer B, Hasenfuss A., Neural Comput 22(9), 2010
PMID: 20569180

32 References

Data provided by Europe PubMed Central.


Ripley, 1996
Online algorithm for the self-organizing map of symbol strings.
Somervuo PJ., Neural Netw 17(8-9), 2004
PMID: 15555863

AUTHOR UNKNOWN, 0
Self-organizing maps and clustering methods for matrix data.
Seo S, Obermayer K., Neural Netw 17(8-9), 2004
PMID: 15555862
Topology preservation in self-organizing feature maps: Exact definition and measurement
Villmann, IEEE Transactions on Neural Networks 2(), 1994

AUTHOR UNKNOWN, 0
A unified framework for model-based clustering
Zhong, Journal of Machine Learning Research 4(), 2003

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16782307
PubMed | Europe PMC

Search this title in

Google Scholar