Divergence based classification in Learning Vector Quantization

Mwebaze E, Schneider P, Schleif F-M, Aduwo JR, Quinn JA, Haase S, Villmann T, Biehl M (2011)
Neurocomputing 74(9): 1429-1435.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
We discuss the use of divergences in dissimilarity-based classification. Divergences can be employed whenever vectorial data consists of non-negative, potentially normalized features. This is, for instance, the case in spectral data or histograms. In particular, we introduce and study divergence based learning vector quantization (DLVQ). We derive cost function based DLVQ schemes for the family of gamma-divergences which includes the well-known Kullback-Leibler divergence and the so-called Cauchy-Schwarz divergence as special cases. The corresponding training schemes are applied to two different real world data sets. The first one, a benchmark data set (Wisconsin Breast Cancer) is available in the public domain. In the second problem, color histograms of leaf images are used to detect the presence of cassava mosaic disease in cassava plants. We compare the use of standard Euclidean distances with DLVQ for different parameter settings. We show that DLVQ can yield superior classification accuracies and Receiver Operating Characteristics
Publishing Year
ISSN
PUB-ID

Cite this

Mwebaze E, Schneider P, Schleif F-M, et al. Divergence based classification in Learning Vector Quantization. Neurocomputing. 2011;74(9):1429-1435.
Mwebaze, E., Schneider, P., Schleif, F. - M., Aduwo, J. R., Quinn, J. A., Haase, S., Villmann, T., et al. (2011). Divergence based classification in Learning Vector Quantization. Neurocomputing, 74(9), 1429-1435.
Mwebaze, E., Schneider, P., Schleif, F. - M., Aduwo, J. R., Quinn, J. A., Haase, S., Villmann, T., and Biehl, M. (2011). Divergence based classification in Learning Vector Quantization. Neurocomputing 74, 1429-1435.
Mwebaze, E., et al., 2011. Divergence based classification in Learning Vector Quantization. Neurocomputing, 74(9), p 1429-1435.
E. Mwebaze, et al., “Divergence based classification in Learning Vector Quantization”, Neurocomputing, vol. 74, 2011, pp. 1429-1435.
Mwebaze, E., Schneider, P., Schleif, F.-M., Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., Biehl, M.: Divergence based classification in Learning Vector Quantization. Neurocomputing. 74, 1429-1435 (2011).
Mwebaze, E., Schneider, P., Schleif, Frank-Michael, Aduwo, J.R., Quinn, J.A., Haase, S., Villmann, T., and Biehl, M. “Divergence based classification in Learning Vector Quantization”. Neurocomputing 74.9 (2011): 1429-1435.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar