Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential

Akemann G, Bloch J, Shifrin L, Wettig T (2008)
Phys.Rev.Lett. 100(3): 032002.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
We analyze how individual eigenvalues of the QCD Dirac operator at nonzeroquark chemical potential are distributed in the complex plane. Exact andapproximate analytical results for both quenched and unquenched distributionsare derived from non-Hermitian random matrix theory. When comparing these toquenched lattice QCD spectra close to the origin, excellent agreement is foundfor zero and nonzero topology at several values of the quark chemicalpotential. Our analytical results are also applicable to other physical systemsin the same symmetry class.
Erscheinungsjahr
Zeitschriftentitel
Phys.Rev.Lett.
Band
100
Zeitschriftennummer
3
Seite
032002
ISSN
eISSN
PUB-ID

Zitieren

Akemann G, Bloch J, Shifrin L, Wettig T. Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential. Phys.Rev.Lett. 2008;100(3):032002.
Akemann, G., Bloch, J., Shifrin, L., & Wettig, T. (2008). Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential. Phys.Rev.Lett., 100(3), 032002. doi:10.1103/PhysRevLett.100.032002
Akemann, G., Bloch, J., Shifrin, L., and Wettig, T. (2008). Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential. Phys.Rev.Lett. 100, 032002.
Akemann, G., et al., 2008. Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential. Phys.Rev.Lett., 100(3), p 032002.
G. Akemann, et al., “Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential”, Phys.Rev.Lett., vol. 100, 2008, pp. 032002.
Akemann, G., Bloch, J., Shifrin, L., Wettig, T.: Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential. Phys.Rev.Lett. 100, 032002 (2008).
Akemann, Gernot, Bloch, J., Shifrin, L., and Wettig, T. “Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential”. Phys.Rev.Lett. 100.3 (2008): 032002.

35 References

Daten bereitgestellt von Europe PubMed Central.

Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential
AKEMANN, Nuclear Physics B 712(1-2), 2005
Level-spacing distributions and the Airy kernel
Tracy, Communications in Mathematical Physics 159(1), 1994
New method of determining Fπ on the lattice
Damgaard, Physical Review D 72(9), 2005
Overlap Dirac operator at nonzero chemical potential and random matrix theory.
Bloch J, Wettig T., Phys. Rev. Lett. 97(1), 2006
PMID: 16907367
Phase of the fermion determinant at nonzero chemical potential.
Splittorff K, Verbaarschot JJ., Phys. Rev. Lett. 98(3), 2007
PMID: 17358675
MATRIX MODELS AND QCD WITH CHEMICAL POTENTIAL
AKEMANN, International Journal of Modern Physics A 22(6), 2007
Two-Flavor Lattice-QCD Simulation in the ϵ Regime with Exact Chiral Symmetry
Fukaya, Physical Review Letters 98(17), 2007
QCD sign problem for small chemical potential
Splittorff, Physical Review D 75(11), 2007
Equivalence of QCD in the ϵ-regime and chiral random matrix theory with or without chemical potential
Basile, Journal of High Energy Physics 2007(12), 2007
Domain-wall and overlap fermions at nonzero quark chemical potential
Bloch, Physical Review D 76(11), 2007

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18232968
PubMed | Europe PMC

arXiv: 0710.2865

Inspire: 764218

Suchen in

Google Scholar