The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals

Torres Tejerizo G, Florencia Del Papa M, Eugenia Soria-Diaz M, Draghi W, Lozano M, de los Angeles Giusti M, Manyani H, Megias M, Gil Serrano A, Pühler A, Niehaus K, et al. (2011)
Journal of Bacteriology 193(1): 30-39.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala. The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae. Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequences. The phylogenetic analysis of the intergenic region nodEG positions strain LPU83 and the type strain R. mongolense 1844 in the same branch, which indicates that Rhizobium sp. strain LPU83 might represent an early alfalfa-nodulating genotype. The NF chemical structures obtained for the wild-type strain consist of a trimeric, tetrameric, and pentameric chitin backbone that shares some substitutions with both alfalfa-and bean-nodulating rhizobia. Remarkably, while in strain LPU83 most of the NFs were sulfated in their reducing terminal residue, none of the NFs isolated from the nodH mutant LPU83-H were sulfated. The evidence obtained supports the notion that the sulfate decoration of NFs in LPU83 is not necessary for alfalfa nodulation.
Publishing Year
ISSN
PUB-ID

Cite this

Torres Tejerizo G, Florencia Del Papa M, Eugenia Soria-Diaz M, et al. The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals. Journal of Bacteriology. 2011;193(1):30-39.
Torres Tejerizo, G., Florencia Del Papa, M., Eugenia Soria-Diaz, M., Draghi, W., Lozano, M., de los Angeles Giusti, M., Manyani, H., et al. (2011). The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals. Journal of Bacteriology, 193(1), 30-39.
Torres Tejerizo, G., Florencia Del Papa, M., Eugenia Soria-Diaz, M., Draghi, W., Lozano, M., de los Angeles Giusti, M., Manyani, H., Megias, M., Gil Serrano, A., Pühler, A., et al. (2011). The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals. Journal of Bacteriology 193, 30-39.
Torres Tejerizo, G., et al., 2011. The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals. Journal of Bacteriology, 193(1), p 30-39.
G. Torres Tejerizo, et al., “The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals”, Journal of Bacteriology, vol. 193, 2011, pp. 30-39.
Torres Tejerizo, G., Florencia Del Papa, M., Eugenia Soria-Diaz, M., Draghi, W., Lozano, M., de los Angeles Giusti, M., Manyani, H., Megias, M., Gil Serrano, A., Pühler, A., Niehaus, K., Lagares, A., Pistorio, M.: The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals. Journal of Bacteriology. 193, 30-39 (2011).
Torres Tejerizo, Gonzalo, Florencia Del Papa, Maria, Eugenia Soria-Diaz, M., Draghi, Walter, Lozano, Mauricio, de los Angeles Giusti, Maria, Manyani, Hamid, Megias, Manuel, Gil Serrano, Antonio, Pühler, Alfred, Niehaus, Karsten, Lagares, Antonio, and Pistorio, Mariano. “The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals”. Journal of Bacteriology 193.1 (2011): 30-39.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Symbiont shift towards Rhizobium nodulation in a group of phylogenetically related Phaseolus species.
Servin-Garciduenas LE, Zayas-Del Moral A, Ormeno-Orrillo E, Rogel MA, Delgado-Salinas A, Sanchez F, Martinez-Romero E., Mol. Phylogenet. Evol. 79(), 2014
PMID: 24952318
Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background.
Torres Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schluter A, Puhler A, Lagares A, Romero D, Brom S., FEMS Microbiol. Ecol. 88(3), 2014
PMID: 24646299
Genome sequence of the acid-tolerant strain Rhizobium sp. LPU83.
Wibberg D, Tejerizo GT, Del Papa MF, Martini C, Puhler A, Lagares A, Schluter A, Pistorio M., J. Biotechnol. 176(), 2014
PMID: 24556327
Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia.
Althabegoiti MJ, Ormeno-Orrillo E, Lozano L, Torres Tejerizo G, Rogel MA, Mora J, Martinez-Romero E., BMC Microbiol. 14(), 2014
PMID: 24397311
Genome sequence of Rhizobium grahamii CCGE502, a broad-host-range symbiont with low nodulation competitiveness in Phaseolus vulgaris.
Althabegoiti MJ, Lozano L, Torres-Tejerizo G, Ormeno-Orrillo E, Rogel MA, Gonzalez V, Martinez-Romero E., J. Bacteriol. 194(23), 2012
PMID: 23144400
Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness.
Op den Camp RH, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJ, Bisseling T, Geurts R., Mol. Plant Microbe Interact. 25(7), 2012
PMID: 22668002

59 References

Data provided by Europe PubMed Central.


AUTHOR UNKNOWN, 1989
Rhizobial lipo-oligosaccharides: answers and questions.
Spaink HP., Plant Mol. Biol. 20(5), 1992
PMID: 1463833
Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography.
Spaink HP, Aarts A, Stacey G, Bloemberg GV, Lugtenberg BJ, Kennedy EP., Mol. Plant Microbe Interact. 5(1), 1992
PMID: 1600238
A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium.
Spaink HP, Sheeley DM, van Brussel AA, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJ., Nature 354(6349), 1991
PMID: 1944592
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738

AUTHOR UNKNOWN, 2010
Nitrogen-fixing sinorhizobia with Medicago laciniata constitute a novel biovar (bv. medicaginis) of S. meliloti.
Villegas Mdel C, Rome S, Maure L, Domergue O, Gardan L, Bailly X, Cleyet-Marel JC, Brunel B., Syst. Appl. Microbiol. 29(7), 2006
PMID: 16413160

AUTHOR UNKNOWN, 2001

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20971905
PubMed | Europe PMC

Search this title in

Google Scholar