Thermal variational principle and gauge fields

Schroeder Y, Schulz H (1996)
Phys.Rev. D 54(12): 7677-7694.

No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

A Feynman-Jensen version of the thermal variational principle is applied tohot gauge fields, Abelian as well as non-Abelian: scalar electrodynamics(without scalar self-coupling) and the gluon plasma. The perturbatively knownself-energies are shown to derive by variation from a free quadratic(''Gaussian'') trial Lagrangian. Independence of the covariant gauge fixingparameter is reached (within the order $g^3$ studied) after a reformulation ofthe partition function such that it depends on only even powers of the gaugefield. Also static properties (Debye screening) are reproduced this way. Butbecause of the present need to expand the variational functional, the methodfalls short of its potential nonperturbative power.
Publishing Year

Cite this

Schroeder Y, Schulz H. Thermal variational principle and gauge fields. Phys.Rev. D. 1996;54(12):7677-7694.
Schroeder, Y., & Schulz, H. (1996). Thermal variational principle and gauge fields. Phys.Rev. D, 54(12), 7677-7694. doi:10.1103/PhysRevD.54.7677
Schroeder, Y., and Schulz, H. (1996). Thermal variational principle and gauge fields. Phys.Rev. D 54, 7677-7694.
Schroeder, Y., & Schulz, H., 1996. Thermal variational principle and gauge fields. Phys.Rev. D, 54(12), p 7677-7694.
Y. Schroeder and H. Schulz, “Thermal variational principle and gauge fields”, Phys.Rev. D, vol. 54, 1996, pp. 7677-7694.
Schroeder, Y., Schulz, H.: Thermal variational principle and gauge fields. Phys.Rev. D. 54, 7677-7694 (1996).
Schroeder, York, and Schulz, Hermann. “Thermal variational principle and gauge fields”. Phys.Rev. D 54.12 (1996): 7677-7694.
This data publication is cited in the following publications:
This publication cites the following data publications:

64 References

Data provided by Europe PubMed Central.

Asymptotic behavior of the correlator for Polyakov loops.
Braaten E, Nieto A., Phys. Rev. Lett. 74(18), 1995
PMID: 10058229
Lifetime of quasiparticles in hot QED plasmas.
Blaizot JP, Iancu E., Phys. Rev. Lett. 76(17), 1996
PMID: 10060870
On a Minimum Property of the Free Energy
Peierls, Physical Review 54(11), 1938
Slow Electrons in a Polar Crystal
Feynman, Physical Review 97(3), 1955
QCD phenomenology based on a chiral effective Lagrangian
Hatsuda, Physics Reports 247(5-6), 1994
Real- and imaginary-time field theory at finite temperature and density
Landsman, Physics Reports 145(3-4), 1987
On the spectral densities of hot gluons
Schulz, Physics Letters B 291(4), 1992
Variational principle for effective action and prospects of nonlinear optimization
Ibañez-Meier, Physics Letters B 279(1-2), 1992
Resummed loop expansion for high temperature QCD
Kreuzer, Physics Letters B 244(1), 1990
A functional BRS-study of the abelian Higgs vacuum. I. The coulomb phase
ALLES, Annals of Physics 204(2), 1990

BLAU, International Journal of Modern Physics A 6(30), 1991

BLAU, International Journal of Modern Physics A 4(6), 1989
Mean fields and self consistent normal ordering of lattice spin and gauge field theories
Rühl, Zeitschrift für Physik C Particles and Fields 32(2), 1986
The variational approach to the pure gauge theory
MANKA, Annals of Physics 171(1), 1986


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 10020781
PubMed | Europe PMC

arXiv hep-ph/9510305

Inspire 400855

Search this title in

Google Scholar