The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas

Cheung A, Stürzl W, Zeil J, Cheng K (2008)
Journal of Experimental Psychology. Animal Behavior Processes 34(1): 15-30.

Download
OA 1.39 MB
Journal Article | Published | English
Author
; ; ;
Abstract
Two recent studies testing navigation of rats in swimming pools have posed problems for any account of the use of purely geometric properties of space in navigation (M. Graham, M. A. Good, A. McGregor, & J. M. Pearce, 2006; J. M. Pearce, M. A. Good, P. M. Jones, & A. McGregor, 2004). The authors simulated I experiment from each study in a virtual reality environment to test whether experimental results could be explained by view-based navigation. The authors recorded a reference image at the target location and then determined global panoramic image differences between this image and images taken at regularly spaced locations throughout the arena. A formal model, in which an agent attempts to minimize image differences between the reference image and current views, generated trajectories that could be compared with the search performance of rats. For both experiments, this model mimics many aspects of rat behavior. View-based navigation provides a sufficient and parsimonious explanation for a range of navigational behaviors of rats under these experimental conditions.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Cheung A, Stürzl W, Zeil J, Cheng K. The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes. 2008;34(1):15-30.
Cheung, A., Stürzl, W., Zeil, J., & Cheng, K. (2008). The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1), 15-30.
Cheung, A., Stürzl, W., Zeil, J., and Cheng, K. (2008). The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes 34, 15-30.
Cheung, A., et al., 2008. The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes, 34(1), p 15-30.
A. Cheung, et al., “The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas”, Journal of Experimental Psychology. Animal Behavior Processes, vol. 34, 2008, pp. 15-30.
Cheung, A., Stürzl, W., Zeil, J., Cheng, K.: The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas. Journal of Experimental Psychology. Animal Behavior Processes. 34, 15-30 (2008).
Cheung, Allen, Stürzl, Wolfgang, Zeil, Jochen, and Cheng, Ken. “The information content of panoramic images: II. View-based navigation in non-rectangular experimental arenas”. Journal of Experimental Psychology. Animal Behavior Processes 34.1 (2008): 15-30.
Main File(s)
File Name
Access Level
OA Open Access
Last Uploaded
2016-11-07T10:07:21Z

This data publication is cited in the following publications:
This publication cites the following data publications:

22 Citations in Europe PMC

Data provided by Europe PubMed Central.

Blocking spatial navigation across environments that have a different shape.
Buckley MG, Smith AD, Haselgrove M., J Exp Psychol Anim Learn Cogn 42(1), 2016
PMID: 26569017
Visual stability-what is the problem?
Glennerster A., Front Psychol 6(), 2015
PMID: 26236253
Principles of goal-directed spatial robot navigation in biomimetic models.
Milford M, Schulz R., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369(1655), 2014
PMID: 25267826
The role of local, distal, and global information in latent spatial learning.
Gilroy KE, Pearce JM., J Exp Psychol Anim Learn Cogn 40(2), 2014
PMID: 24893219
Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.
Buckley MG, Smith AD, Haselgrove M., J Exp Psychol Learn Mem Cogn 40(2), 2014
PMID: 24245537
Latent spatial learning in an environment with a distinctive shape.
Horne MR, Gilroy KE, Cuell SF, Pearce JM., J Exp Psychol Anim Behav Process 38(2), 2012
PMID: 22369200
From natural geometry to spatial cognition.
Tommasi L, Chiandetti C, Pecchia T, Sovrano VA, Vallortigara G., Neurosci Biobehav Rev 36(2), 2012
PMID: 22206900
Geometric cues influence head direction cells only weakly in nondisoriented rats.
Knight R, Hayman R, Lin Ginzberg L, Jeffery K., J. Neurosci. 31(44), 2011
PMID: 22049411
Influence of distal and proximal cues in encoding geometric information.
Vargas JP, Quintero E, Lopez JC., Anim Cogn 14(3), 2011
PMID: 21184122
Features enhance the encoding of geometry.
Kelly DM., Anim Cogn 13(3), 2010
PMID: 20012120
Modeling the effects of enclosure size on geometry learning.
Miller N., Behav. Processes 80(3), 2009
PMID: 20522319
Ants in rectangular arenas: a support for the global matching theory.
Wystrach A., Commun Integr Biol 2(5), 2009
PMID: 19907695
Modelling place memory in crickets.
Mangan M, Webb B., Biol Cybern 101(4), 2009
PMID: 19862550
Ants learn geometry and features.
Wystrach A, Beugnon G., Curr. Biol. 19(1), 2009
PMID: 19119010
Whither geometry? Troubles of the geometric module.
Cheng K., Trends Cogn. Sci. (Regul. Ed.) 12(9), 2008
PMID: 18684662

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18248112
PubMed | Europe PMC

Search this title in

Google Scholar