Monitoring multiple distances within a single molecule using switchable FRET

Uphoff S, Holden SJ, Le Reste L, Periz J, van de Linde S, Heilemann M, Kapanidis AN (2010)
NATURE METHODS 7(10): 831-836.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
The analysis of structure and dynamics of biomolecules is important for understanding their function. Toward this aim, we introduce a method called 'switchable FRET', which combines single-molecule fluorescence resonance energy transfer (FRET) with reversible photoswitching of fluorophores. Typically, single-molecule FRET is measured within a single donor-acceptor pair and reports on only one distance. Although multipair FRET approaches that monitor multiple distances have been developed, they are technically challenging and difficult to extend, mainly because of their reliance on spectrally distinct acceptors. In contrast, switchable FRET sequentially probes FRET between a single donor and spectrally identical photoswitchable acceptors, dramatically reducing the experimental and analytical complexity and enabling direct monitoring of multiple distances. Our experiments on DNA molecules, a protein-DNA complex and dynamic Holliday junctions demonstrate the potential of switchable FRET for studying dynamic, multicomponent biomolecules.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Uphoff S, Holden SJ, Le Reste L, et al. Monitoring multiple distances within a single molecule using switchable FRET. NATURE METHODS. 2010;7(10):831-836.
Uphoff, S., Holden, S. J., Le Reste, L., Periz, J., van de Linde, S., Heilemann, M., & Kapanidis, A. N. (2010). Monitoring multiple distances within a single molecule using switchable FRET. NATURE METHODS, 7(10), 831-836.
Uphoff, S., Holden, S. J., Le Reste, L., Periz, J., van de Linde, S., Heilemann, M., and Kapanidis, A. N. (2010). Monitoring multiple distances within a single molecule using switchable FRET. NATURE METHODS 7, 831-836.
Uphoff, S., et al., 2010. Monitoring multiple distances within a single molecule using switchable FRET. NATURE METHODS, 7(10), p 831-836.
S. Uphoff, et al., “Monitoring multiple distances within a single molecule using switchable FRET”, NATURE METHODS, vol. 7, 2010, pp. 831-836.
Uphoff, S., Holden, S.J., Le Reste, L., Periz, J., van de Linde, S., Heilemann, M., Kapanidis, A.N.: Monitoring multiple distances within a single molecule using switchable FRET. NATURE METHODS. 7, 831-836 (2010).
Uphoff, Stephan, Holden, Seamus J., Le Reste, Ludovic, Periz, Javier, van de Linde, Sebastian, Heilemann, Mike, and Kapanidis, Achillefs N. “Monitoring multiple distances within a single molecule using switchable FRET”. NATURE METHODS 7.10 (2010): 831-836.
This data publication is cited in the following publications:
This publication cites the following data publications:

29 Citations in Europe PMC

Data provided by Europe PubMed Central.

Single-molecule imaging at high fluorophore concentrations by local activation of dye.
Geertsema HJ, Schulte AC, Spenkelink LM, McGrath WJ, Morrone SR, Sohn J, Mangel WF, Robinson A, van Oijen AM., Biophys. J. 108(4), 2015
PMID: 25692599
Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers.
Long W, Zou W, Li X, Jiang W, Li X, Chen J., Opt Express 22(6), 2014
PMID: 24663973

40 References

Data provided by Europe PubMed Central.

Faint flux performance of an EMCCD
Daigle, 2006
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Rust MJ, Bates M, Zhuang X., Nat. Methods 3(10), 2006
PMID: 16896339
Nonblinking and long-lasting single-molecule fluorescence imaging.
Rasnik I, McKinney SA, Ha T., Nat. Methods 3(11), 2006
PMID: 17013382
Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK, Weiss S., Biophys. J. 92(1), 2007
PMID: 17040983
Optical lock-in detection of FRET using synthetic and genetically encoded optical switches.
Mao S, Benninger RK, Yan Y, Petchprayoon C, Jackson D, Easley CJ, Piston DW, Marriott G., Biophys. J. 94(11), 2008
PMID: 18281383
A practical guide to single-molecule FRET.
Roy R, Hohng S, Ha T., Nat. Methods 5(6), 2008
PMID: 18511918
Subdiffraction-Resolution Fluorescence Imaging with Conventional Fluorescent Probes
Heilemann, Angewandte Chemie International Edition 47(33), 2008
A nano-positioning system for macromolecular structural analysis.
Muschielok A, Andrecka J, Jawhari A, Bruckner F, Cramer P, Michaelis J., Nat. Methods 5(11), 2008
PMID: 18849988
Single-molecule FRET measures bends and kinks in DNA.
Wozniak AK, Schroder GF, Grubmuller H, Seidel CA, Oesterhelt F., Proc. Natl. Acad. Sci. U.S.A. 105(47), 2008
PMID: 19020079
FRET or no FRET: a quantitative comparison.
Berney C, Danuser G., Biophys. J. 84(6), 2003
PMID: 12770904
Precise nanometer localization analysis for individual fluorescent probes.
Thompson RE, Larson DR, Webb WW., Biophys. J. 82(5), 2002
PMID: 11964263
On the mechanism of Trolox as antiblinking and antibleaching reagent.
Cordes T, Vogelsang J, Tinnefeld P., J. Am. Chem. Soc. 131(14), 2009
PMID: 19301868
Biology, one molecule at a time.
Kapanidis AN, Strick T., Trends Biochem. Sci. 34(5), 2009
PMID: 19362843
Single-Molecule FRET Analysis of Protein–DNA Complexes
Heilemann, 2009
Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy.
Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P., Proc. Natl. Acad. Sci. U.S.A. 106(20), 2009
PMID: 19433792

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20818380
PubMed | Europe PMC

Search this title in

Google Scholar