Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection

Bartsch JW, Wildeboer D, Koller G, Naus S, Rittger A, Moss ML, Minai Y, Jockusch H (2010)
J Neurosci 30(36): 12210-12218.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
Tumor necrosis factor alpha (TNF-alpha) is a potent cytokine in neurodegenerative disorders, but its precise role in particular brain disorders is ambiguous. In motor neuron (MN) disease of the mouse, exemplified by the model wobbler (WR), TNF-alpha causes upregulation of the metalloprotease-disintegrin ADAM8 (A8) in affected brain regions, spinal cord, and brainstem. The functional role of A8 during MN degeneration in the wobbler CNS was investigated by crossing WR with A8-deficient mice: a severely aggravated neuropathology was observed for A8-deficient WR compared with WRA8(+/-) mice, judged by drastically reduced survival [ 7 vs 81% survival at postnatal day 50 (P50)], accelerated force loss in the forelimbs, and terminal akinesis. In vitro protease assays using soluble A8 indicated specific cleavage of a TNF-alpha receptor 1 (p55 TNF-R1) but not a TNF-R2 peptide. Cleavage of TNF-R1 was confirmed in situ, because levels of soluble TNF-R1 were increased in spinal cords of standard WR compared with wild-type mice but not in A8-deficient WR mice. In isolated primary neurons and microglia, TNF-alpha-induced TNF-R1 shedding was dependent on the A8 gene dosage. Furthermore, exogenous TNF-alpha showed higher toxicity for cultured neurons from A8-deficient than for those from wild-type mice, demonstrating that TNF-R1 shedding by A8 is neuroprotective. Our results indicate an essential role for ADAM8 in modulating TNF-alpha signaling in CNS diseases: a feedback loop integrating TNF-alpha, ADAM8, and TNF-R1 shedding as a plausible mechanism for TNF-alpha mediated neuroprotection in situ and a rationale for therapeutic intervention.
Erscheinungsjahr
Zeitschriftentitel
J Neurosci
Band
30
Zeitschriftennummer
36
Seite
12210-12218
ISSN
eISSN
PUB-ID

Zitieren

Bartsch JW, Wildeboer D, Koller G, et al. Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection. J Neurosci. 2010;30(36):12210-12218.
Bartsch, J. W., Wildeboer, D., Koller, G., Naus, S., Rittger, A., Moss, M. L., Minai, Y., et al. (2010). Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection. J Neurosci, 30(36), 12210-12218. doi:10.1523/JNEUROSCI.1520-10.2010
Bartsch, J. W., Wildeboer, D., Koller, G., Naus, S., Rittger, A., Moss, M. L., Minai, Y., and Jockusch, H. (2010). Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection. J Neurosci 30, 12210-12218.
Bartsch, J.W., et al., 2010. Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection. J Neurosci, 30(36), p 12210-12218.
J.W. Bartsch, et al., “Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection”, J Neurosci, vol. 30, 2010, pp. 12210-12218.
Bartsch, J.W., Wildeboer, D., Koller, G., Naus, S., Rittger, A., Moss, M.L., Minai, Y., Jockusch, H.: Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection. J Neurosci. 30, 12210-12218 (2010).
Bartsch, Joerg W., Wildeboer, Dirk, Koller, Garrit, Naus, Silvia, Rittger, Andrea, Moss, Marcia L., Minai, Yuji, and Jockusch, Harald. “Tumor Necrosis Factor-alpha (TNF-alpha) Regulates Shedding of TNF-alpha Receptor 1 by the Metalloprotease-Disintegrin ADAM8: Evidence for a Protease-Regulated Feedback Loop in Neuroprotection”. J Neurosci 30.36 (2010): 12210-12218.

23 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Effects of TNF receptor blockade on in vitro cell survival and response to negative energy balance in dairy cattle.
Martel CA, Mamedova LK, Minton JE, Garcia M, Legallet C, Bradford BJ., J Anim Sci Biotechnol 9(), 2018
PMID: 29344353
Inducible expression of A Disintegrin and Metalloproteinase 8 in chronic periodontitis and gingival epithelial cells.
Aung WPP, Chotjumlong P, Pata S, Montreekachon P, Supanchart C, Khongkhunthian S, Sastraruji T, Krisanaprakornkit S., J Periodontal Res 52(3), 2017
PMID: 27859260
Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression.
Theodorou K, van der Vorst EPC, Gijbels MJ, Wolfs IMJ, Jeurissen M, Theelen TL, Sluimer JC, Wijnands E, Cleutjens JP, Li Y, Jansen Y, Weber C, Ludwig A, Bentzon JF, Bartsch JW, Biessen EAL, Donners MMPC., Sci Rep 7(1), 2017
PMID: 28916789
γ-Secretase Activity Is Required for Regulated Intramembrane Proteolysis of Tumor Necrosis Factor (TNF) Receptor 1 and TNF-mediated Pro-apoptotic Signaling.
Chhibber-Goel J, Coleman-Vaughan C, Agrawal V, Sawhney N, Hickey E, Powell JC, McCarthy JV., J Biol Chem 291(11), 2016
PMID: 26755728
The ADAMs family of proteases as targets for the treatment of cancer.
Mullooly M, McGowan PM, Crown J, Duffy MJ., Cancer Biol Ther 17(8), 2016
PMID: 27115328
ADAM-family metalloproteinases in lung inflammation: potential therapeutic targets.
Dreymueller D, Uhlig S, Ludwig A., Am J Physiol Lung Cell Mol Physiol 308(4), 2015
PMID: 25480335
ADAM8 as a drug target in pancreatic cancer.
Schlomann U, Koller G, Conrad C, Ferdous T, Golfi P, Garcia AM, Höfling S, Parsons M, Costa P, Soper R, Bossard M, Hagemann T, Roshani R, Sewald N, Ketchem RR, Moss ML, Rasmussen FH, Miller MA, Lauffenburger DA, Tuveson DA, Nimsky C, Bartsch JW., Nat Commun 6(), 2015
PMID: 25629724
Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain.
Miller MA, Moss ML, Powell G, Petrovich R, Edwards L, Meyer AS, Griffith LG, Lauffenburger DA., Sci Rep 5(), 2015
PMID: 26477568
ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis.
Romagnoli M, Mineva ND, Polmear M, Conrad C, Srinivasan S, Loussouarn D, Barillé-Nion S, Georgakoudi I, Dagg Á, McDermott EW, Duffy MJ, McGowan PM, Schlomann U, Parsons M, Bartsch JW, Sonenshein GE., EMBO Mol Med 6(2), 2014
PMID: 24375628
N-glycosylation regulates ADAM8 processing and activation.
Srinivasan S, Romagnoli M, Bohm A, Sonenshein GE., J Biol Chem 289(48), 2014
PMID: 25336660
Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.
Mac Nair CE, Fernandes KA, Schlamp CL, Libby RT, Nickells RW., J Neuroinflammation 11(), 2014
PMID: 25407441
Elevated levels of a disintegrin and metalloproteinase 8 in gingival crevicular fluid of patients with periodontal diseases.
Khongkhunthian S, Techasatian P, Supanchart C, Bandhaya P, Montreekachon P, Thawanaphong S, Krisanaprakornkit S., J Periodontol 84(4), 2013
PMID: 22612366
Loss of vps54 function leads to vesicle traffic impairment, protein mis-sorting and embryonic lethality.
Karlsson P, Droce A, Moser JM, Cuhlmann S, Padilla CO, Heimann P, Bartsch JW, Füchtbauer A, Füchtbauer EM, Schmitt-John T., Int J Mol Sci 14(6), 2013
PMID: 23708095
(-)-Epigallocatechin gallate inhibits TNF-α-induced PAI-1 production in vascular endothelial cells.
Cao Y, Wang D, Wang X, Zhang J, Shan Z, Teng W., J Cardiovasc Pharmacol 62(5), 2013
PMID: 23921304
The role of ADAM-mediated shedding in vascular biology.
Dreymueller D, Pruessmeyer J, Groth E, Ludwig A., Eur J Cell Biol 91(6-7), 2012
PMID: 22138087
Cellular prion protein regulates its own α-cleavage through ADAM8 in skeletal muscle.
Liang J, Wang W, Sorensen D, Medina S, Ilchenko S, Kiselar J, Surewicz WK, Booth SA, Kong Q., J Biol Chem 287(20), 2012
PMID: 22447932
Inflammatory cytokines in experimental and human stroke.
Lambertsen KL, Biber K, Finsen B., J Cereb Blood Flow Metab 32(9), 2012
PMID: 22739623
Common variation in the ADAM8 gene affects serum sADAM8 concentrations and the risk of myocardial infarction in two independent cohorts.
Raitoharju E, Seppälä I, Levula M, Kuukasjärvi P, Laurikka J, Nikus K, Huovila AP, Oksala N, Klopp N, Illig T, Laaksonen R, Karhunen PJ, Viik J, Lehtinen R, Pelto-Huikko M, Tarkka M, Kähönen M, Lehtimäki T., Atherosclerosis 218(1), 2011
PMID: 21640993
ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein.
Moss ML, Powell G, Miller MA, Edwards L, Qi B, Sang QX, De Strooper B, Tesseur I, Lichtenthaler SF, Taverna M, Zhong JL, Dingwall C, Ferdous T, Schlomann U, Zhou P, Griffith LG, Lauffenburger DA, Petrovich R, Bartsch JW., J Biol Chem 286(47), 2011
PMID: 21956108

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20826683
PubMed | Europe PMC

Suchen in

Google Scholar