Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways

Bosse T, Ehinger J, Czuchra A, Benesch S, Steffen A, Wu X, Schloen K, Niemann H, Scita G, Stradal TE, Brakebusch C, et al. (2007)
Mol Cell Biol 27(19): 6615-6628.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Publishing Year
ISSN
PUB-ID

Cite this

Bosse T, Ehinger J, Czuchra A, et al. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol. 2007;27(19):6615-6628.
Bosse, T., Ehinger, J., Czuchra, A., Benesch, S., Steffen, A., Wu, X., Schloen, K., et al. (2007). Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol, 27(19), 6615-6628.
Bosse, T., Ehinger, J., Czuchra, A., Benesch, S., Steffen, A., Wu, X., Schloen, K., Niemann, H., Scita, G., Stradal, T. E., et al. (2007). Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol 27, 6615-6628.
Bosse, T., et al., 2007. Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol, 27(19), p 6615-6628.
T. Bosse, et al., “Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways”, Mol Cell Biol, vol. 27, 2007, pp. 6615-6628.
Bosse, T., Ehinger, J., Czuchra, A., Benesch, S., Steffen, A., Wu, X., Schloen, K., Niemann, H., Scita, G., Stradal, T.E., Brakebusch, C., Rottner, K.: Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways. Mol Cell Biol. 27, 6615-6628 (2007).
Bosse, T., Ehinger, J., Czuchra, A., Benesch, S., Steffen, A., Wu, X., Schloen, K., Niemann, Hartmut, Scita, G., Stradal, T. E., Brakebusch, C., and Rottner, K. “Cdc42 and phosphoinositide 3-kinase drive Rac-mediated actin polymerization downstream of c-Met in distinct and common pathways”. Mol Cell Biol 27.19 (2007): 6615-6628.
This data publication is cited in the following publications:
This publication cites the following data publications:

23 Citations in Europe PMC

Data provided by Europe PubMed Central.

The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes.
Fattouh R, Kwon H, Czuczman MA, Copeland JW, Pelletier L, Quinlan ME, Muise AM, Higgins DE, Brumell JH., J. Infect. Dis. 211(7), 2015
PMID: 25281757
The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection.
Balaji K, French CT, Miller JF, Colicelli J., Traffic 15(11), 2014
PMID: 25082076
CLN3 deficient cells display defects in the ARF1-Cdc42 pathway and actin-dependent events.
Schultz ML, Tecedor L, Stein CS, Stamnes MA, Davidson BL., PLoS ONE 9(5), 2014
PMID: 24792215
Suppression of p21Rac signaling and increased innate immunity mediate remission in Crohn's disease.
Parikh K, Zhou L, Somasundaram R, Fuhler GM, Deuring JJ, Blokzijl T, Regeling A, Kuipers EJ, Weersma RK, Nuij VJ, Alves M, Vogelaar L, Visser L, de Haar C, Krishnadath KK, van der Woude CJ, Dijkstra G, Faber KN, Peppelenbosch MP., Sci Transl Med 6(233), 2014
PMID: 24760188
Requirements for and consequences of Rac-dependent protrusion.
Steffen A, Koestler SA, Rottner K., Eur. J. Cell Biol. 93(5-6), 2014
PMID: 24629839
Arp2/3 complex inhibitors adversely affect actin cytoskeleton remodeling in the cultured murine kidney collecting duct M-1 cells.
Ilatovskaya DV, Chubinskiy-Nadezhdin V, Pavlov TS, Shuyskiy LS, Tomilin V, Palygin O, Staruschenko A, Negulyaev YA., Cell Tissue Res. 354(3), 2013
PMID: 24036843
Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view.
Pizarro-Cerda J, Kuhbacher A, Cossart P., Cold Spring Harb Perspect Med 2(11), 2012
PMID: 23125201
Theoretical model for cellular shapes driven by protrusive and adhesive forces.
Kabaso D, Shlomovitz R, Schloen K, Stradal T, Gov NS., PLoS Comput. Biol. 7(5), 2011
PMID: 21573201
RhoB links PDGF signaling to cell migration by coordinating activation and localization of Cdc42 and Rac.
Huang M, Satchell L, Duhadaway JB, Prendergast GC, Laury-Kleintop LD., J. Cell. Biochem. 112(6), 2011
PMID: 21344485
A tandem repeat of a fragment of Listeria monocytogenes internalin B protein induces cell survival and proliferation.
Mungunsukh O, Lee YH, Marquez AP, Cecchi F, Bottaro DP, Day RM., Am. J. Physiol. Lung Cell Mol. Physiol. 299(6), 2010
PMID: 20889677
WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond.
Rottner K, Hanisch J, Campellone KG., Trends Cell Biol. 20(11), 2010
PMID: 20888769
Matrix-independent stimulation of human tubular epithelial cell migration by Rho kinase inhibitors.
Kroening S, Stix J, Keller C, Streiff C, Goppelt-Struebe M., J. Cell. Physiol. 223(3), 2010
PMID: 20175114
Role of Rac1-regulated signaling in medulloblastoma invasion. Laboratory investigation.
Zavarella S, Nakada M, Belverud S, Coniglio SJ, Chan A, Mittler MA, Schneider SJ, Symons M., J Neurosurg Pediatr 4(2), 2009
PMID: 19645540
Downstream signals for MyD88-mediated phagocytosis of Borrelia burgdorferi can be initiated by TRIF and are dependent on PI3K.
Shin OS, Miller LS, Modlin RL, Akira S, Uematsu S, Hu LT., J. Immunol. 183(1), 2009
PMID: 19542460
Cortactin promotes migration and platelet-derived growth factor-induced actin reorganization by signaling to Rho-GTPases.
Lai FP, Szczodrak M, Oelkers JM, Ladwein M, Acconcia F, Benesch S, Auinger S, Faix J, Small JV, Polo S, Stradal TE, Rottner K., Mol. Biol. Cell 20(14), 2009
PMID: 19458196
The origins of phagocytosis and eukaryogenesis.
Yutin N, Wolf MY, Wolf YI, Koonin EV., Biol. Direct 4(), 2009
PMID: 19245710
Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts.
Weiger MC, Wang CC, Krajcovic M, Melvin AT, Rhoden JJ, Haugh JM., J. Cell. Sci. 122(Pt 3), 2009
PMID: 19126672
Regulation of connective tissue growth factor (CTGF) by hepatocyte growth factor in human tubular epithelial cells.
Kroening S, Solomovitch S, Sachs M, Wullich B, Goppelt-Struebe M., Nephrol. Dial. Transplant. 24(3), 2009
PMID: 18829614
Biotechnological applications of Listeria's sophisticated infection strategies.
Barbuddhe S, Chakraborty T., Microb Biotechnol 1(5), 2008
PMID: 21261856
Met-driven invasive growth involves transcriptional regulation of Arhgap12.
Gentile A, D'Alessandro L, Lazzari L, Martinoglio B, Bertotti A, Mira A, Lanzetti L, Comoglio PM, Medico E., Oncogene 27(42), 2008
PMID: 18504429

59 References

Data provided by Europe PubMed Central.

Rho family GTPases bind to phosphoinositide kinases.
Tolias KF, Cantley LC, Carpenter CL., J. Biol. Chem. 270(30), 1995
PMID: 7629060
Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine.
Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL., Mol. Cell 6(4), 2000
PMID: 11090628
Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.
Weiner OD, Rentel MC, Ott A, Brown GE, Jedrychowski M, Yaffe MB, Gygi SP, Cantley LC, Bourne HR, Kirschner MW., PLoS Biol. 4(2), 2006
PMID: 16417406

AUTHOR UNKNOWN, 2005
WAVE2 is required for directed cell migration and cardiovascular development.
Yamazaki D, Suetsugu S, Miki H, Kataoka Y, Nishikawa S, Fujiwara T, Yoshida N, Takenawa T., Nature 424(6947), 2003
PMID: 12879075
Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85.
Zheng Y, Bagrodia S, Cerione RA., J. Biol. Chem. 269(29), 1994
PMID: 8034624

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17682062
PubMed | Europe PMC

Search this title in

Google Scholar