Stochastic response restrictions

Haupt H, Oberhofer W (2005)
Journal of Multivariate Analysis 95(1): 66-75.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
This paper considers the implementation of prior stochastic information on unknown outcomes of the response variables into estimation and forecasting of systems of linear regression equations in the context of time series, cross sections, pooled and longitudinal data models. The established approach proves particularly useful when only aggregated information on the response variables is available, as is frequently the case in applied statistics. We address the combination of prior stochastic and sample information as an extension of standard Gauss-Markov theory. Prior stochastic information could be given in the form of experts' expectations, or from estimations and/or projections of other models. A classical (i.e. non-Bayesian) regression framework for the incorporation of prior knowledge in generalized least-squares estimation and prediction is developed.
Erscheinungsjahr
Zeitschriftentitel
Journal of Multivariate Analysis
Band
95
Zeitschriftennummer
1
Seite
66-75
ISSN
PUB-ID

Zitieren

Haupt H, Oberhofer W. Stochastic response restrictions. Journal of Multivariate Analysis. 2005;95(1):66-75.
Haupt, H., & Oberhofer, W. (2005). Stochastic response restrictions. Journal of Multivariate Analysis, 95(1), 66-75. doi:10.1016/j.jmva.2004.08.006
Haupt, H., and Oberhofer, W. (2005). Stochastic response restrictions. Journal of Multivariate Analysis 95, 66-75.
Haupt, H., & Oberhofer, W., 2005. Stochastic response restrictions. Journal of Multivariate Analysis, 95(1), p 66-75.
H. Haupt and W. Oberhofer, “Stochastic response restrictions”, Journal of Multivariate Analysis, vol. 95, 2005, pp. 66-75.
Haupt, H., Oberhofer, W.: Stochastic response restrictions. Journal of Multivariate Analysis. 95, 66-75 (2005).
Haupt, Harry, and Oberhofer, Walter. “Stochastic response restrictions”. Journal of Multivariate Analysis 95.1 (2005): 66-75.