Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate

Kato O, Youn J-W, Stansen KC, Matsui D, Oikawa T, Wendisch VF (2010)
BMC Microbiology 10(1).

Download
OA
Journal Article | Published | English
Author
; ; ; ; ;
Abstract
Background: Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032. Results: Here, the gene cg1027 was shown to encode the quinone-dependent D-lactate dehydrogenase (Dld) by enzymatic analysis of the protein purified from recombinant E. coli. The absorption spectrum of purified Dld indicated the presence of FAD as bound cofactor. Inactivation of dld resulted in the loss of the ability to grow with D-lactate, which could be restored by plasmid-borne expression of dld. Heterologous expression of dld from C. glutamicum ATCC 13032 in C. efficiens enabled this species to grow with D-lactate as sole carbon source. Homologs of dld of C. glutamicum ATCC 13032 are not encoded in the sequenced genomes of other corynebacteria and mycobacteria. However, the dld locus of C. glutamicum ATCC 13032 shares 2367 bp of 2372 bp identical nucleotides with the dld locus of Propionibacterium freudenreichii subsp. shermanii, a bacterium used in Swiss-type cheese making. Both loci are flanked by insertion sequences of the same family suggesting a possible event of horizontal gene transfer. Conclusions: Cg1067 encodes quinone-dependent D-lactate dehydrogenase Dld of Corynebacterium glutamicum. Dld is essential for growth with D-lactate as sole carbon source. The genomic region of dld likely has been acquired by horizontal gene transfer.
Publishing Year
ISSN
PUB-ID

Cite this

Kato O, Youn J-W, Stansen KC, Matsui D, Oikawa T, Wendisch VF. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology. 2010;10(1).
Kato, O., Youn, J. - W., Stansen, K. C., Matsui, D., Oikawa, T., & Wendisch, V. F. (2010). Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology, 10(1).
Kato, O., Youn, J. - W., Stansen, K. C., Matsui, D., Oikawa, T., and Wendisch, V. F. (2010). Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology 10.
Kato, O., et al., 2010. Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology, 10(1).
O. Kato, et al., “Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate”, BMC Microbiology, vol. 10, 2010.
Kato, O., Youn, J.-W., Stansen, K.C., Matsui, D., Oikawa, T., Wendisch, V.F.: Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate. BMC Microbiology. 10, (2010).
Kato, Osamu, Youn, Jung-Won, Stansen, K. C., Matsui, Daisuke, Oikawa, Tadao, and Wendisch, Volker F. “Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate”. BMC Microbiology 10.1 (2010).
Main File(s)
Access Level
OA Open Access
Last Uploaded
2015-12-11T14:05:27Z

This data publication is cited in the following publications:
This publication cites the following data publications:

13 Citations in Europe PMC

Data provided by Europe PubMed Central.

Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.
Sheng B, Xu J, Zhang Y, Jiang T, Deng S, Kong J, Gao C, Ma C, Xu P., Appl. Environ. Microbiol. 81(12), 2015
PMID: 25862219
Microbial lactate utilization: enzymes, pathogenesis, and regulation.
Jiang T, Gao C, Ma C, Xu P., Trends Microbiol. 22(10), 2014
PMID: 24950803
Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.
Matano C, Uhde A, Youn JW, Maeda T, Clermont L, Marin K, Kramer R, Wendisch VF, Seibold GM., Appl. Microbiol. Biotechnol. 98(12), 2014
PMID: 24668244
Conversion of Corynebacterium glutamicum from an aerobic respiring to an aerobic fermenting bacterium by inactivation of the respiratory chain.
Koch-Koerfges A, Pfelzer N, Platzen L, Oldiges M, Bott M., Biochim. Biophys. Acta 1827(6), 2013
PMID: 23416842
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.
Zahoor A, Lindner SN, Wendisch VF., Comput Struct Biotechnol J 3(), 2012
PMID: 24688664
NAD-independent L-lactate dehydrogenase is required for L-lactate utilization in Pseudomonas stutzeri SDM.
Gao C, Jiang T, Dou P, Ma C, Li L, Kong J, Xu P., PLoS ONE 7(5), 2012
PMID: 22574176
Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.
Gopinath V, Murali A, Dhar KS, Nampoothiri KM., Appl. Microbiol. Biotechnol. 93(1), 2012
PMID: 22094976
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382

64 References

Data provided by Europe PubMed Central.

Molecular analysis of human forearm superficial skin bacterial biota.
Gao Z, Tseng CH, Pei Z, Blaser MJ., Proc. Natl. Acad. Sci. U.S.A. 104(8), 2007
PMID: 17293459
A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme.
Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, Obata S., Proc. Natl. Acad. Sci. U.S.A. 105(45), 2008
PMID: 18978031
Genetically engineered wine yeast produces a high concentration of L-lactic acid of extremely high optical purity.
Saitoh S, Ishida N, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H., Appl. Environ. Microbiol. 71(5), 2005
PMID: 15870375
D-lactic acid production by metabolically engineered Saccharomyces cerevisiae.
Ishida N, Suzuki T, Tokuhiro K, Nagamori E, Onishi T, Saitoh S, Kitamoto K, Takahashi H., J. Biosci. Bioeng. 101(2), 2006
PMID: 16569615
Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1.
Chang DE, Jung HC, Rhee JS, Pan JG., Appl. Environ. Microbiol. 65(4), 1999
PMID: 10103226
Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110.
Zhou S, Causey TB, Hasona A, Shanmugam KT, Ingram LO., Appl. Environ. Microbiol. 69(1), 2003
PMID: 12514021
Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation.
Zhu Y, Lee YY, Elander RT., Appl. Biochem. Biotechnol. 137-140(1-12), 2007
PMID: 18478429
Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol.
Mazumdar S, Clomburg JM, Gonzalez R., Appl. Environ. Microbiol. 76(13), 2010
PMID: 20472739
Taxonomical studies on glutamic acid producing bacteria
AUTHOR UNKNOWN, 1967
PRODORIC: prokaryotic database of gene regulation.
Munch R, Hiller K, Barg H, Heldt D, Linz S, Wingender E, Jahn D., Nucleic Acids Res. 31(1), 2003
PMID: 12519998

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 21159175
PubMed | Europe PMC

Search this title in

Google Scholar