A splitting property of maximal antichains

Ahlswede R, Erdős PL, Graham N (1995)
Combinatorica 15(4): 475-480.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
In any dense poset P (and in any Boolean lattice in particular) every maximal antichain S may be partitioned into disjoint subsets S-1 and S-2, such that the union of the downset of S-1 with the upset of S-2 yields the entire poset: D(S-1)boolean OR U(S-2)=P. To find a similar splitting of maximal antichains in posets is NP-hard in general.
Publishing Year
ISSN
PUB-ID

Cite this

Ahlswede R, Erdős PL, Graham N. A splitting property of maximal antichains. Combinatorica. 1995;15(4):475-480.
Ahlswede, R., Erdős, P. L., & Graham, N. (1995). A splitting property of maximal antichains. Combinatorica, 15(4), 475-480.
Ahlswede, R., Erdős, P. L., and Graham, N. (1995). A splitting property of maximal antichains. Combinatorica 15, 475-480.
Ahlswede, R., Erdős, P.L., & Graham, N., 1995. A splitting property of maximal antichains. Combinatorica, 15(4), p 475-480.
R. Ahlswede, P.L. Erdős, and N. Graham, “A splitting property of maximal antichains”, Combinatorica, vol. 15, 1995, pp. 475-480.
Ahlswede, R., Erdős, P.L., Graham, N.: A splitting property of maximal antichains. Combinatorica. 15, 475-480 (1995).
Ahlswede, Rudolf, Erdős, Peter L., and Graham, Niall. “A splitting property of maximal antichains”. Combinatorica 15.4 (1995): 475-480.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar