The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti

de Lucena DK, Pühler A, Weidner S (2010)
BMC Microbiology 10(1): 256.

Journal Article | Original Article | Published | English
; ;
Abstract / Notes
Background: Environmental pH stress constitutes a limiting factor for S. meliloti survival and development. The response to acidic pH stress in S. meliloti is versatile and characterized by the differential expression of genes associated with various cellular functions. The purpose of this study was to gain detailed insight into the participation of sigma factors in the complex stress response system of S. meliloti 1021 using pH stress as an effector. Results: In vitro assessment of S meliloti wild type and sigma factor mutants provided first evidence that the sigma factor RpoH1 plays a major role in the pH stress response. Differential expression of genes related to rhizobactin biosynthesis was observed in microarray analyses performed with the rpoH1 mutant at pH 7.0. The involvement of the sigma factor RpoH1 in the regulation of S. meliloti genes upon pH stress was analyzed by comparing timecourse experiments of the wild type and the rpoH1 mutant. Three classes of S. meliloti genes could be identified, which were transcriptionally regulated in an RpoH1-independent, an RpoH1-dependent or in a complex manner. The first class of S. meliloti genes, regulated in an RpoH1-independent manner, comprises the group of the exopolysaccharide I biosynthesis genes and also the group of genes involved in motility and flagellar biosynthesis. The second class of S. meliloti genes, regulated in an RpoH1-dependent manner, is composed of genes known from heat shock studies, like ibpA, grpE and groEL5, as well as genes involved in translation like tufA and rplC. Finally, the third class of S. meliloti genes was regulated in a complex manner, which indicates that besides sigma factor RpoH1, further regulation takes place. This was found to be the case for the genes dctA, ndvA and smc01505. Conclusions: Clustering of time-course microarray data of S. meliloti wild type and sigma factor rpoH1 mutant allowed for the identification of gene clusters, each with a unique time-dependent expression pattern, as well as for the classification of genes according to their dependence on RpoH1 expression and regulation. This study provided clear evidence that the sigma factor RpoH1 plays a major role in pH stress response.
Publishing Year

Cite this

de Lucena DK, Pühler A, Weidner S. The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiology. 2010;10(1):256.
de Lucena, D. K., Pühler, A., & Weidner, S. (2010). The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiology, 10(1), 256. doi:10.1186/1471-2180-10-256
de Lucena, D. K., Pühler, A., and Weidner, S. (2010). The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiology 10, 256.
de Lucena, D.K., Pühler, A., & Weidner, S., 2010. The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiology, 10(1), p 256.
D.K. de Lucena, A. Pühler, and S. Weidner, “The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti”, BMC Microbiology, vol. 10, 2010, pp. 256.
de Lucena, D.K., Pühler, A., Weidner, S.: The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiology. 10, 256 (2010).
de Lucena, Daniella Karine, Pühler, Alfred, and Weidner, Stefan. “The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti”. BMC Microbiology 10.1 (2010): 256.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2012-02-16 08:28:24

This data publication is cited in the following publications:
This publication cites the following data publications:

21 Citations in Europe PMC

Data provided by Europe PubMed Central.

Evolution of a multi-step phosphorelay signal transduction system in Ensifer: recruitment of the sigma factor RpoN and a novel enhancer-binding protein triggers acid-activated gene expression.
Tian R, Heiden S, Osman WA, Ardley JK, James EK, Gollagher MM, Tiwari R, Seshadri R, Kyrpides NC, Reeve WG., Mol Microbiol 103(5), 2017
PMID: 27935141
An RpoHI-Dependent Response Promotes Outgrowth after Extended Stationary Phase in the Alphaproteobacterium Rhodobacter sphaeroides.
Remes B, Rische-Grahl T, Müller KMH, Förstner KU, Yu SH, Weber L, Jäger A, Peuser V, Klug G., J Bacteriol 199(14), 2017
PMID: 28507242
Regulator LdhR and d-Lactate Dehydrogenase LdhA of Burkholderia multivorans Play Roles in Carbon Overflow and in Planktonic Cellular Aggregate Formation.
Silva IN, Ramires MJ, Azevedo LA, Guerreiro AR, Tavares AC, Becker JD, Moreira LM., Appl Environ Microbiol 83(19), 2017
PMID: 28733286
The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.
Paço A, Brígido C, Alexandre A, Mateos PF, Oliveira S., PLoS One 11(2), 2016
PMID: 26845770
Transcriptomic analysis of the process of biofilm formation in Rhizobium etli CFN42.
Reyes-Pérez A, Vargas Mdel C, Hernández M, Aguirre-von-Wobeser E, Pérez-Rueda E, Encarnacion S., Arch Microbiol 198(9), 2016
PMID: 27226009
Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.
Penterman J, Abo RP, De Nisco NJ, Arnold MF, Longhi R, Zanda M, Walker GC., Proc Natl Acad Sci U S A 111(9), 2014
PMID: 24501120
The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules.
Santos MR, Marques AT, Becker JD, Moreira LM., Mol Plant Microbe Interact 27(4), 2014
PMID: 24593245
Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021.
Schlüter JP, Reinkensmeier J, Barnett MJ, Lang C, Krol E, Giegerich R, Long SR, Becker A., BMC Genomics 14(), 2013
PMID: 23497287
Next-generation annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011.
Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T., DNA Res 20(4), 2013
PMID: 23599422
Adaptation of Pseudomonas aeruginosa to a pulsed light-induced stress.
Massier S, Rincé A, Maillot O, Feuilloley MG, Orange N, Chevalier S., J Appl Microbiol 112(3), 2012
PMID: 22188372
Dual RpoH sigma factors and transcriptional plasticity in a symbiotic bacterium.
Barnett MJ, Bittner AN, Toman CJ, Oke V, Long SR., J Bacteriol 194(18), 2012
PMID: 22773790
Sinorhizobium meliloti sigma factors RpoE1 and RpoE4 are activated in stationary phase in response to sulfite.
Bastiat B, Sauviac L, Picheraux C, Rossignol M, Bruand C., PLoS One 7(11), 2012
PMID: 23226379
A ClpB chaperone knockout mutant of Mesorhizobium ciceri shows a delay in the root nodulation of chickpea plants.
Brígido C, Robledo M, Menéndez E, Mateos PF, Oliveira S., Mol Plant Microbe Interact 25(12), 2012
PMID: 23134119
Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi.
Lei Z, Jian-ping G, Shi-qing W, Ze-yang Z, Chao Z, Yongxiong Y., Can J Microbiol 57(6), 2011
PMID: 21635219

65 References

Data provided by Europe PubMed Central.

Escherichia coli acid resistance: tales of an amateur acidophile.
Foster JW., Nat. Rev. Microbiol. 2(11), 2004
PMID: 15494746
Sinorhizobium meliloti rpoE2 is necessary for H(2)O(2) stress resistance during the stationary growth phase.
Flechard M, Fontenelle C, Trautwetter A, Ermel G, Blanco C., FEMS Microbiol. Lett. 290(1), 2009
PMID: 19025578
A sigma54-dependent promoter in the regulatory region of the Escherichia coli rpoH gene.
Janaszak A, Majczak W, Nadratowska B, Szalewska-Palasz A, Konopa G, Taylor A., Microbiology (Reading, Engl.) 153(Pt 1), 2007
PMID: 17185540
Exploring the metabolic and genetic control of gene expression on a genomic scale.
DeRisi JL, Iyer VR, Brown PO., Science 278(5338), 1997
PMID: 9381177

R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098

Construction and validation of a Sinorhizobium meliloti whole genome DNA microarray: genome-wide profiling of osmoadaptive gene expression.
Ruberg S, Tian ZX, Krol E, Linke B, Meyer F, Wang Y, Puhler A, Weidner S, Becker A., J. Biotechnol. 106(2-3), 2003
PMID: 14651866
EMMA: a platform for consistent storage and efficient analysis of microarray data.
Dondrup M, Goesmann A, Bartels D, Kalinowski J, Krause L, Linke B, Rupp O, Sczyrba A, Puhler A, Meyer F., J. Biotechnol. 106(2-3), 2003
PMID: 14651856
Sinorhizobium meliloti 1021 Sm14kOLI
Genesis: cluster analysis of microarray data.
Sturn A, Quackenbush J, Trajanoski Z., Bioinformatics 18(1), 2002
PMID: 11836235
EMMA server
Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants.
Grant SG, Jessee J, Bloom FR, Hanahan D., Proc. Natl. Acad. Sci. U.S.A. 87(12), 1990
PMID: 2162051


0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®


PMID: 20955556
PubMed | Europe PMC

Search this title in

Google Scholar