Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data

Hemmelmann C, Ziegler A, Guiard V, Weiss S, Walther M, Vollandt R (2008)
Journal Of Neuroscience Methods 170(1): 158-164.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
Journal Of Neuroscience Methods
Band
170
Zeitschriftennummer
1
Seite
158-164
ISSN
PUB-ID

Zitieren

Hemmelmann C, Ziegler A, Guiard V, Weiss S, Walther M, Vollandt R. Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data. Journal Of Neuroscience Methods. 2008;170(1):158-164.
Hemmelmann, C., Ziegler, A., Guiard, V., Weiss, S., Walther, M., & Vollandt, R. (2008). Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data. Journal Of Neuroscience Methods, 170(1), 158-164. doi:10.1016/j.jneumeth.2007.12.013
Hemmelmann, C., Ziegler, A., Guiard, V., Weiss, S., Walther, M., and Vollandt, R. (2008). Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data. Journal Of Neuroscience Methods 170, 158-164.
Hemmelmann, C., et al., 2008. Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data. Journal Of Neuroscience Methods, 170(1), p 158-164.
C. Hemmelmann, et al., “Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data”, Journal Of Neuroscience Methods, vol. 170, 2008, pp. 158-164.
Hemmelmann, C., Ziegler, A., Guiard, V., Weiss, S., Walther, M., Vollandt, R.: Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data. Journal Of Neuroscience Methods. 170, 158-164 (2008).
Hemmelmann, Claudia, Ziegler, Andreas, Guiard, Volker, Weiss, Sabine, Walther, Mario, and Vollandt, Rüdiger. “Multiple test procedures using an upper bound of the number of true hypotheses and their use for evaluating high-dimensional EEG data”. Journal Of Neuroscience Methods 170.1 (2008): 158-164.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Repetitive transcranial magnetic stimulation directed to a seizure focus localized by high-density EEG: A case report.
Fisher R, Zhou J, Fogarty A, Joshi A, Markert M, Deutsch GK, Velez M., Epilepsy Behav Case Rep 10(), 2018
PMID: 29984172
Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review.
Groppe DM, Urbach TP, Kutas M., Psychophysiology 48(12), 2011
PMID: 21895683
Quantification of compensatory processes of postnatal hypoxia in newborn piglets applying short-term nonlinear dynamics analysis.
Schulz S, Reulecke S, Eiselt M, Schwab K, Witte H, Walter B, Bauer R, Voss A., Biomed Eng Online 10(), 2011
PMID: 21967770

30 References

Daten bereitgestellt von Europe PubMed Central.

Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini, J Roy Stat Soc Ser B Stat Methodol 57(), 1995
On the adaptive control of the false discovery fate in multiple testing with independent statistics
Benjamini, J Educ Behav Stat 25(), 2000
Adaptive linear step-up procedures that control the false discovery rate
Benjamini, Biometrika 93(), 2006
A comparative review of estimates of the proportion unchanged genes and the false discovery rate
Broberg, BMC Bioinformatics (), 2005
Multivariate tests for the evaluation of high-dimensional EEG data.
Hemmelmann C, Horn M, Reiterer S, Schack B, Susse T, Weiss S., J. Neurosci. Methods 139(1), 2004
PMID: 15351527
New concepts of multiple tests and their use for evaluating high-dimensional EEG data.
Hemmelmann C, Horn M, Susse T, Vollandt R, Weiss S., J. Neurosci. Methods 142(2), 2005
PMID: 15698661
A simple sequentially rejective multiple testing procedure
Holm, Scand J Stat (), 1979
Tests of the overall hypothesis for arbitrary dependence structures
Hommel, Biom J 25(), 1983
Controlled uncertainty
Hommel, 1987
Controlling the number of false discoveries: application to high-dimensional genomic data
Korn, J Stat Plan Infer 124(), 2004
A modified Benjamini–Hochberg multiple comparisons procedure for controlling the false discovery rate
Kwong, J Stat Plan Infer 104(), 2002
Estimating the proportion of true null hypotheses, with application to DNA microarray data
Langaas, J Roy Stat Soc Ser B Stat Methodol 67(), 2005
Generalizations of the familywise error rate
Lehmann, Ann Stat 33(), 2005
Lower bounds for the number of false null hypotheses for multiple testing of associations under general dependence structures
Meinshausen, Biometrika 92(), 2005
Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses
Meinshausen, Ann Stat 34(), 2006
Estimating the number of true null hypotheses from a histogram of p values.
Nettleton D, Hwang JTG, Caldo RA, Wise RP., Journal of agricultural, biological, and environmental statistics. 11(3), 2006
PMID: IND43850429
Some probability inequalities for ordered MTP2 random variables: a proof of the Simes conjecture
Sarkar, Ann Stat 26(), 1998
Plots of P-values to evaluate many tests simultaneously
Schweder, Biometrika 69(), 1982
An improved Bonferroni procedure for multiple tests of significance
Simes, Biometrika 3(), 1986
A direct approach to false discovery rates
Storey, J Roy Stat Soc Ser B Stat Methodol 64(), 2002
Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
Storey, J Roy Stat Soc Ser B Stat Methodol 66(), 2004
Stepwise normal theory multiple test procedures controlling the false discovery rate
Troendle, J Stat Plan Infer 84(), 2000
Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.
Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S., Proc. Natl. Acad. Sci. U.S.A. 91(6), 1994
PMID: 8134342
Significance analysis of microarrays applied to the ionizing radiation response.
Tusher VG, Tibshirani R, Chu G., Proc. Natl. Acad. Sci. U.S.A. 98(9), 2001
PMID: 11309499
Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives
van, Stat Appl Genet Mol Biol (), 2004
Building memories: remembering and forgetting of verbal experiences as predicted by brain activity.
Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL., Science 281(5380), 1998
PMID: 9712582
Long-range EEG synchronization during word encoding correlates with successful memory performance.
Weiss S, Rappelsberger P., Brain Res Cogn Brain Res 9(3), 2000
PMID: 10808141
Theta synchronization predicts efficient memory encoding of concrete and abstract nouns.
Weiss S, Muller HM, Rappelsberger P., Neuroreport 11(11), 2000
PMID: 10943685

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18279970
PubMed | Europe PMC

Suchen in

Google Scholar