Rearrangement Models and Single-Cut Operations

Bergeron A, Medvedev P, Stoye J (2010)
Journal of Computational Biology 17(9): 1213-1225.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Bergeron A, Medvedev P, Stoye J. Rearrangement Models and Single-Cut Operations. Journal of Computational Biology. 2010;17(9):1213-1225.
Bergeron, A., Medvedev, P., & Stoye, J. (2010). Rearrangement Models and Single-Cut Operations. Journal of Computational Biology, 17(9), 1213-1225.
Bergeron, A., Medvedev, P., and Stoye, J. (2010). Rearrangement Models and Single-Cut Operations. Journal of Computational Biology 17, 1213-1225.
Bergeron, A., Medvedev, P., & Stoye, J., 2010. Rearrangement Models and Single-Cut Operations. Journal of Computational Biology, 17(9), p 1213-1225.
A. Bergeron, P. Medvedev, and J. Stoye, “Rearrangement Models and Single-Cut Operations”, Journal of Computational Biology, vol. 17, 2010, pp. 1213-1225.
Bergeron, A., Medvedev, P., Stoye, J.: Rearrangement Models and Single-Cut Operations. Journal of Computational Biology. 17, 1213-1225 (2010).
Bergeron, Anne, Medvedev, Paul, and Stoye, Jens. “Rearrangement Models and Single-Cut Operations”. Journal of Computational Biology 17.9 (2010): 1213-1225.
This data publication is cited in the following publications:
This publication cites the following data publications:

20 References

Data provided by Europe PubMed Central.


feijão, lect notes bioinform 5724(), 2009

meidanis, 2000

sankoff, 1990
On the problem of sorting burnt pancakes
Cohen, Discrete Applied Mathematics 61(2), 1995
Bounds for sorting by prefix reversal
Gates, Discrete Mathematics 27(1), 1979
Lengths of chromosomal segments conserved since divergence of man and mouse.
Nadeau JH, Taylor BA., Proc. Natl. Acad. Sci. U.S.A. 81(3), 1984
PMID: 6583681
Efficient sorting of genomic permutations by translocation, inversion and block interchange.
Yancopoulos S, Attie O, Friedberg R., Bioinformatics 21(16), 2005
PMID: 15951307
Genome Halving under DCJ Revisited
Mixtacki, 2008
A new linear time algorithm to compute the genomic distance via the double cut and join distance
Bergeron, Theoretical Computer Science 410(51), 2009
Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals
Hannenhalli, Journal of the ACM 46(1), 1999
Efficient algorithms for multichromosomal genome rearrangements
Tesler, Journal of Computer and System Sciences 65(3), 2002
Two notes on genome rearrangement.
Ozery-Flato M, Shamir R., J Bioinform Comput Biol 1(1), 2003
PMID: 15290782
Chromosomal breakpoint reuse in genome sequence rearrangement.
Sankoff D, Trinh P., J. Comput. Biol. 12(6), 2005
PMID: 16108718
Reconstructing contiguous regions of an ancestral genome.
Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, Kent WJ, Blanchette M, Haussler D, Miller W., Genome Res. 16(12), 2006
PMID: 16983148
A Unifying View of Genome Rearrangements
Bergeron, 2006
Advances on sorting by reversals
TANNIER, Discrete Applied Mathematics 155(6-7), 2007
Genome rearrangements: a correct algorithm for optimal capping☆
JEAN, Information Processing Letters 104(1), 2007
Are there rearrangement hotspots in the human genome?
Alekseyev MA, Pevzner PA., PLoS Comput. Biol. 3(11), 2007
PMID: 17997591
Estimating true evolutionary distances under the DCJ model.
Lin Y, Moret BM., Bioinformatics 24(13), 2008
PMID: 18586703

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20874405
PubMed | Europe PMC

Search this title in

Google Scholar