Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

Hellman A, Baerends EJ, Biczysko M, Bligaard T, Christensen CH, Clary DC, Dahl S, van Harrevelt R, Honkala K, Jonsson H, Kroes GJ, et al. (2006)
Journal of Physical Chemistry B 110(36): 17719-17735.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N-2 dissociation, H-2 dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Hellman A, Baerends EJ, Biczysko M, et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B. 2006;110(36):17719-17735.
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., et al. (2006). Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B, 110(36), 17719-17735.
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., et al. (2006). Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B 110, 17719-17735.
Hellman, A., et al., 2006. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B, 110(36), p 17719-17735.
A. Hellman, et al., “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”, Journal of Physical Chemistry B, vol. 110, 2006, pp. 17719-17735.
Hellman, A., Baerends, E.J., Biczysko, M., Bligaard, T., Christensen, C.H., Clary, D.C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., Kroes, G.J., Luppi, M., Manthe, U., Norskov, J.K., Olsen, R.A., Rossmeisl, J., Skulason, E., Tautermann, C.S., Varandas, A.J.C., Vincent, J.K.: Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B. 110, 17719-17735 (2006).
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., Kroes, G. J., Luppi, M., Manthe, Uwe, Norskov, J. K., Olsen, R. A., Rossmeisl, J., Skulason, E., Tautermann, C. S., Varandas, A. J. C., and Vincent, J. K. “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”. Journal of Physical Chemistry B 110.36 (2006): 17719-17735.
This data publication is cited in the following publications:
This publication cites the following data publications:

20 Citations in Europe PMC

Data provided by Europe PubMed Central.

Dinitrogen activation upon reduction of a triiron(II) complex.
Lee Y, Sloane FT, Blondin G, Abboud KA, Garcia-Serres R, Murray LJ., Angew. Chem. Int. Ed. Engl. 54(5), 2015
PMID: 25504859
Electrochemical ammonia production on molybdenum nitride nanoclusters.
Howalt JG, Vegge T., Phys Chem Chem Phys 15(48), 2013
PMID: 24213187
DFT based study of transition metal nano-clusters for electrochemical NH3 production.
Howalt JG, Bligaard T, Rossmeisl J, Vegge T., Phys Chem Chem Phys 15(20), 2013
PMID: 23598667
Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2) electrodes.
Gudmundsdottir S, Tang W, Henkelman G, Jonsson H, Skulason E., J Chem Phys 137(16), 2012
PMID: 23126735
Investigation of formally zerovalent Triphos iron complexes.
Mukhopadhyay TK, Feller RK, Rein FN, Henson NJ, Smythe NC, Trovitch RJ, Gordon JC., Chem. Commun. (Camb.) 48(69), 2012
PMID: 22825701
A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction.
Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jonsson H, Norskov JK., Phys Chem Chem Phys 14(3), 2012
PMID: 22146855
N₂reduction and hydrogenation to ammonia by a molecular iron-potassium complex.
Rodriguez MM, Bill E, Brennessel WW, Holland PL., Science 334(6057), 2011
PMID: 22076372
Universal transition state scaling relations for (de)hydrogenation over transition metals.
Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skulason E, Fernandez EM, Hvolbæk B, Jones G, Toftelund A, Falsig H, Bjorketun M, Studt F, Abild-Pedersen F, Rossmeisl J, Norskov JK, Bligaard T., Phys Chem Chem Phys 13(46), 2011
PMID: 21996683
A new analytical potential energy surface for the adsorption system CO/Cu(100).
Marquardt R, Cuvelier F, Olsen RA, Baerends EJ, Tremblay JC, Saalfrank P., J Chem Phys 132(7), 2010
PMID: 20170216
Metal-free heterogeneous catalysis for sustainable chemistry.
Su DS, Zhang J, Frank B, Thomas A, Wang X, Paraknowitsch J, Schlogl R., ChemSusChem 3(2), 2010
PMID: 20127789
The role of chemistry in the energy challenge.
Schlogl R., ChemSusChem 3(2), 2010
PMID: 20041467
Density functional theory for transition metals and transition metal chemistry.
Cramer CJ, Truhlar DG., Phys Chem Chem Phys 11(46), 2009
PMID: 19924312
Accurate ab initio based DMBE potential energy surface for the ground electronic state of N2H2.
Poveda LA, Biczysko M, Varandas AJ., J Chem Phys 131(4), 2009
PMID: 19655869
A note on the vibrational efficacy in molecule-surface reactions.
Diaz C, Olsen RA., J Chem Phys 130(9), 2009
PMID: 19275417
Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces.
Wilson J, Guo H, Morales R, Podgornov E, Lee I, Zaera F., Phys Chem Chem Phys 9(29), 2007
PMID: 17637975

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16956255
PubMed | Europe PMC

Search this title in

Google Scholar