Predicting catalysis: Understanding ammonia synthesis from first-principles calculations

Hellman A, Baerends EJ, Biczysko M, Bligaard T, Christensen CH, Clary DC, Dahl S, van Harrevelt R, Honkala K, Jonsson H, Kroes GJ, et al. (2006)
Journal of Physical Chemistry B 110(36): 17719-17735.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Here, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N-2 dissociation, H-2 dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.
Erscheinungsjahr
Zeitschriftentitel
Journal of Physical Chemistry B
Band
110
Zeitschriftennummer
36
Seite
17719-17735
ISSN
eISSN
PUB-ID

Zitieren

Hellman A, Baerends EJ, Biczysko M, et al. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B. 2006;110(36):17719-17735.
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., et al. (2006). Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B, 110(36), 17719-17735. doi:10.1021/jp056982h
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., et al. (2006). Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B 110, 17719-17735.
Hellman, A., et al., 2006. Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B, 110(36), p 17719-17735.
A. Hellman, et al., “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”, Journal of Physical Chemistry B, vol. 110, 2006, pp. 17719-17735.
Hellman, A., Baerends, E.J., Biczysko, M., Bligaard, T., Christensen, C.H., Clary, D.C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., Kroes, G.J., Luppi, M., Manthe, U., Norskov, J.K., Olsen, R.A., Rossmeisl, J., Skulason, E., Tautermann, C.S., Varandas, A.J.C., Vincent, J.K.: Predicting catalysis: Understanding ammonia synthesis from first-principles calculations. Journal of Physical Chemistry B. 110, 17719-17735 (2006).
Hellman, A., Baerends, E. J., Biczysko, M., Bligaard, T., Christensen, C. H., Clary, D. C., Dahl, S., van Harrevelt, R., Honkala, K., Jonsson, H., Kroes, G. J., Luppi, M., Manthe, Uwe, Norskov, J. K., Olsen, R. A., Rossmeisl, J., Skulason, E., Tautermann, C. S., Varandas, A. J. C., and Vincent, J. K. “Predicting catalysis: Understanding ammonia synthesis from first-principles calculations”. Journal of Physical Chemistry B 110.36 (2006): 17719-17735.

29 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A note on the vibrational efficacy in molecule-surface reactions.
Díaz C, Olsen RA., J Chem Phys 130(9), 2009
PMID: 19275417
Accurate ab initio based DMBE potential energy surface for the ground electronic state of N2H2.
Poveda LA, Biczysko M, Varandas AJ., J Chem Phys 131(4), 2009
PMID: 19655869
Kinetic measurements of hydrocarbon conversion reactions on model metal surfaces.
Wilson J, Guo H, Morales R, Podgornov E, Lee I, Zaera F., Phys Chem Chem Phys 9(29), 2007
PMID: 17637975

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 16956255
PubMed | Europe PMC

Suchen in

Google Scholar