Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate

Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H (2009)
Journal of Physical Chemistry A 113(16): 4468-4478.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract / Notes
Thermal rate constants are calculated for the H + CH4 -> CH3 + H-2 reaction employing the potential energy surface of Espinosa-Garcia (Espinosa-Garcia, J. J. Chem. Phys. 2002, 116, 10664). Two theoretical approaches are used. First, we employ the multiconfigurational time-dependent Hartree method combined with flux correlation functions. In this way rate constants in the range 225-400 K are obtained and compared with previous results using the same theoretical method but the potential energy surface of Wu et al. (Wu, T.; Werner, H.-J.; Manthe, U. Science 2004, 306, 2227). It is found that the Espinosa-Garcia surface results in larger rate constants. Second, a harmonic quantum transition state theory (HQTST) implementation of instanton theory is used to obtain rate constants in a temperature interval from 20 K up to the crossover temperature at 296 K. The HQTST estimates are larger than MCTDH ones by a factor of about three in the common temperature range. Comparison is also made with various tunneling corrections to transition state theory and quantum instanton theory.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Andersson S, Nyman G, Arnaldsson A, Manthe U, Jonsson H. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A. 2009;113(16):4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., & Jonsson, H. (2009). Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A, 113(16), 4468-4478. doi:10.1021/jp811070w
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., and Jonsson, H. (2009). Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A 113, 4468-4478.
Andersson, S., et al., 2009. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A, 113(16), p 4468-4478.
S. Andersson, et al., “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”, Journal of Physical Chemistry A, vol. 113, 2009, pp. 4468-4478.
Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., Jonsson, H.: Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate. Journal of Physical Chemistry A. 113, 4468-4478 (2009).
Andersson, Stefan, Nyman, Gunnar, Arnaldsson, Andri, Manthe, Uwe, and Jonsson, Hannes. “Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H+CH4 Reaction Rate”. Journal of Physical Chemistry A 113.16 (2009): 4468-4478.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19275158
PubMed | Europe PMC

Search this title in

Google Scholar