An amorphous solid state of biogenic secondary organic aerosol particles

Virtanen A, Joutsensaari J, Koop T, Kannosto J, Yli-Pirila P, Leskinen J, Makela JM, Holopainen JK, Poeschl U, Kulmala M, Worsnop DR, et al. (2010)
NATURE 467(7317): 824-827.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs)(1-7). On a global scale, biogenic VOCs account for about 90% of VOC emissions(1,8) and of SOA formation (90 billion kilograms of carbon per year)(1-4). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate(1,2,5,9,10). They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid(1,5,11), but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles(12-15). Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate.
Erscheinungsjahr
Zeitschriftentitel
NATURE
Band
467
Zeitschriftennummer
7317
Seite
824-827
ISSN
eISSN
PUB-ID

Zitieren

Virtanen A, Joutsensaari J, Koop T, et al. An amorphous solid state of biogenic secondary organic aerosol particles. NATURE. 2010;467(7317):824-827.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J. M., et al. (2010). An amorphous solid state of biogenic secondary organic aerosol particles. NATURE, 467(7317), 824-827. doi:10.1038/nature09455
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J. M., Holopainen, J. K., Poeschl, U., Kulmala, M., et al. (2010). An amorphous solid state of biogenic secondary organic aerosol particles. NATURE 467, 824-827.
Virtanen, A., et al., 2010. An amorphous solid state of biogenic secondary organic aerosol particles. NATURE, 467(7317), p 824-827.
A. Virtanen, et al., “An amorphous solid state of biogenic secondary organic aerosol particles”, NATURE, vol. 467, 2010, pp. 824-827.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J.M., Holopainen, J.K., Poeschl, U., Kulmala, M., Worsnop, D.R., Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles. NATURE. 467, 824-827 (2010).
Virtanen, Annele, Joutsensaari, Jorma, Koop, Thomas, Kannosto, Jonna, Yli-Pirila, Pasi, Leskinen, Jani, Makela, Jyrki M., Holopainen, Jarmo K., Poeschl, Ulrich, Kulmala, Markku, Worsnop, Douglas R., and Laaksonen, Ari. “An amorphous solid state of biogenic secondary organic aerosol particles”. NATURE 467.7317 (2010): 824-827.

74 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A multi-cyclone sampling array for the collection of size-segregated occupational aerosols.
Mischler SE, Cauda EG, Di Giuseppe M, Ortiz LA., J Occup Environ Hyg 10(12), 2013
PMID: 24195535
Fluorescent lifetime imaging of atmospheric aerosols: a direct probe of aerosol viscosity.
Hosny NA, Fitzgerald C, Tong C, Kalberer M, Kuimova MK, Pope FD., Faraday Discuss 165(), 2013
PMID: 24601010
Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol.
Zhou S, Shiraiwa M, McWhinney RD, Pöschl U, Abbatt JP., Faraday Discuss 165(), 2013
PMID: 24601014
Experimental determination of chemical diffusion within secondary organic aerosol particles.
Abramson E, Imre D, Beránek J, Wilson J, Zelenyuk A., Phys Chem Chem Phys 15(8), 2013
PMID: 23340901
Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity.
Renbaum-Wolff L, Grayson JW, Bateman AP, Kuwata M, Sellier M, Murray BJ, Shilling JE, Martin ST, Bertram AK., Proc Natl Acad Sci U S A 110(20), 2013
PMID: 23620520
Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.
Shiraiwa M, Zuend A, Bertram AK, Seinfeld JH., Phys Chem Chem Phys 15(27), 2013
PMID: 23748935
Where do herbivore-induced plant volatiles go?
Holopainen JK, Blande JD., Front Plant Sci 4(), 2013
PMID: 23781224
Nonequilibrium atmospheric secondary organic aerosol formation and growth.
Perraud V, Bruns EA, Ezell MJ, Johnson SN, Yu Y, Alexander ML, Zelenyuk A, Imre D, Chang WL, Dabdub D, Pankow JF, Finlayson-Pitts BJ., Proc Natl Acad Sci U S A 109(8), 2012
PMID: 22308444
Comparing the mechanism of water condensation and evaporation in glassy aerosol.
Bones DL, Reid JP, Lienhard DM, Krieger UK., Proc Natl Acad Sci U S A 109(29), 2012
PMID: 22753520
Ice nucleation by particles immersed in supercooled cloud droplets.
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME., Chem Soc Rev 41(19), 2012
PMID: 22932664
Phase of atmospheric secondary organic material affects its reactivity.
Kuwata M, Martin ST., Proc Natl Acad Sci U S A 109(43), 2012
PMID: 23045632
Ultra-slow water diffusion in aqueous sucrose glasses.
Zobrist B, Soonsin V, Luo BP, Krieger UK, Marcolli C, Peter T, Koop T., Phys Chem Chem Phys 13(8), 2011
PMID: 21229162
Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.
Vaden TD, Imre D, Beránek J, Shrivastava M, Zelenyuk A., Proc Natl Acad Sci U S A 108(6), 2011
PMID: 21262848
The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles.
Shiraiwa M, Sosedova Y, Rouvière A, Yang H, Zhang Y, Abbatt JP, Ammann M, Pöschl U., Nat Chem 3(4), 2011
PMID: 21430687
Potentially important nighttime heterogeneous chemistry: NO3 with aldehydes and N2O5 with alcohols.
Iannone R, Xiao S, Bertram AK., Phys Chem Chem Phys 13(21), 2011
PMID: 21509392
Gas uptake and chemical aging of semisolid organic aerosol particles.
Shiraiwa M, Ammann M, Koop T, Pöschl U., Proc Natl Acad Sci U S A 108(27), 2011
PMID: 21690350
A novel particle sampling system for physico-chemical and toxicological characterization of emissions.
Ruusunen J, Tapanainen M, Sippula O, Jalava PI, Lamberg H, Nuutinen K, Tissari J, Ihalainen M, Kuuspalo K, Mäki-Paakkanen J, Hakulinen P, Pennanen A, Teinilä K, Makkonen U, Salonen RO, Hillamo R, Hirvonen MR, Jokiniemi J., Anal Bioanal Chem 401(10), 2011
PMID: 21960254
Atmospheric chemistry: phase matters for aerosols.
Ziemann PJ., Nature 467(7317), 2010
PMID: 20944736

28 References

Daten bereitgestellt von Europe PubMed Central.

Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets
Murray, Atmospheric Chemistry and Physics 8(17), 2008
Photochemical production of aerosols from real plant emissions
Mentel, Atmospheric Chemistry and Physics 9(13), 2009
The formation, properties and impact of secondary organic aerosol: current and emerging issues
Hallquist, Atmospheric Chemistry and Physics 9(14), 2009

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20944744
PubMed | Europe PMC

Suchen in

Google Scholar