Emerging Corynebacterium glutamicum systems biology

Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006)
Journal of Biotechnology 124(1): 74-92.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Corynebacterium glutamicum is widely used for the biotechnological production of amino acids. Amino acid producing strains have been improved classically by mutagenesis and screening as well as in a rational manner using recombinant DNA technology. Metabolic flux analysis may be viewed as the first systems approach to C glutamicum physiology since it combines isotope labeling data with metabolic network models of the biosynthetic and central metabolic pathways. However, only the complete genome sequence of C. glutamicum and post-genomics methods such as transcriptomics and proteomics have allowed characterizing metabolic and regulatory properties of this bacterium on a truly global level. Besides transcriptomics, and proteomics, metabolomics, and modeling approaches have now been established. Systems biology, which uses systematic genomic, proteomic and metabolomic technologies with the final aim of constructing comprehensive and predictive models of complex biological systems, is emerging for C. glutamicum. We will present current developments that advanced our insight into fundamental biology of C. glutamicum and that in the future will enable novel biotechnological applications for the improvement of amino acid production. (c) 2005 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W. Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology. 2006;124(1):74-92.
Wendisch, V. F., Bott, M., Kalinowski, J., Oldiges, M., & Wiechert, W. (2006). Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology, 124(1), 74-92.
Wendisch, V. F., Bott, M., Kalinowski, J., Oldiges, M., and Wiechert, W. (2006). Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology 124, 74-92.
Wendisch, V.F., et al., 2006. Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology, 124(1), p 74-92.
V.F. Wendisch, et al., “Emerging Corynebacterium glutamicum systems biology”, Journal of Biotechnology, vol. 124, 2006, pp. 74-92.
Wendisch, V.F., Bott, M., Kalinowski, J., Oldiges, M., Wiechert, W.: Emerging Corynebacterium glutamicum systems biology. Journal of Biotechnology. 124, 74-92 (2006).
Wendisch, Volker F., Bott, M., Kalinowski, Jörn, Oldiges, M., and Wiechert, W. “Emerging Corynebacterium glutamicum systems biology”. Journal of Biotechnology 124.1 (2006): 74-92.
This data publication is cited in the following publications:
This publication cites the following data publications:

42 Citations in Europe PMC

Data provided by Europe PubMed Central.

Chassis organism from Corynebacterium glutamicum--a top-down approach to identify and delete irrelevant gene clusters.
Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Bruhl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Kramer R, Seibold G, Frunzke J, Kalinowski J, Ruckert C, Wendisch VF, Noack S., Biotechnol J 10(2), 2015
PMID: 25139579
Cell physiology of the biotechnological relevant bacterium Bacillus pumilus-an omics-based approach.
Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, Bongaerts J, Maurer KH, Lalk M, Liesegang H, Voigt B, Daniel R, Hecker M., J. Biotechnol. 192 Pt A(), 2014
PMID: 25281541
Kinetic and thermodynamic characterization of lysine production process in Brevibacterium lactofermentum.
Ahmed S, Afzal M, Rajoka MI., Appl. Biochem. Biotechnol. 170(1), 2013
PMID: 23475286
Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum.
Zheng P, Liu M, Liu XD, Du QY, Ni Y, Sun ZH., World J. Microbiol. Biotechnol. 28(3), 2012
PMID: 22805825
Post-genomics of Neisseria meningitidis: an update.
Bernardini G, Braconi D, Lusini P, Santucci A., Expert Rev Proteomics 8(6), 2011
PMID: 22087663
Microbial systems engineering: first successes and the way ahead.
Dietz S, Panke S., Bioessays 32(4), 2010
PMID: 20217841
Studies on substrate utilisation in L-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex.
Bartek T, Rudolf C, Kerssen U, Klein B, Blombach B, Lang S, Eikmanns BJ, Oldiges M., Bioprocess Biosyst Eng 33(7), 2010
PMID: 20204663
Postgenomics of Neisseria meningitidis: an update.
Bernardini G, Braconi D, Lusini P, Santucci A., Expert Rev Proteomics 6(2), 2009
PMID: 19385941

149 References

Data provided by Europe PubMed Central.

Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry.
Strelkov S, von Elstermann M, Schomburg D., Biol. Chem. 385(9), 2004
PMID: 15493881
Large-scale engineering of the Corynebacterium glutamicum genome.
Suzuki N, Okayama S, Nonaka H, Tsuge Y, Inui M, Yukawa H., Appl. Environ. Microbiol. 71(6), 2005
PMID: 15933044

AUTHOR UNKNOWN, 0
In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations.
Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M., Biotechnol. Bioeng. 55(2), 1997
PMID: 18636489
Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction.
Vallino JJ, Stephanopoulos G., Biotechnol. Bioeng. 41(6), 1993
PMID: 18609599
Carbon flux distributions at the glucose 6-phosphate branch point in Corynebacterium glutamicum during lysine overproduction
Vallino, Biotechnol. Progr. 10(), 1994
Carbon flux distributions at the pyruvate branch point in Corynebacterium glutamicum during lysine overproduction
Vallino, Biotechnol. Progr. 10(), 1994
Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses.
Visser D, van Zuylen GA, van Dam JC, Eman MR, Proll A, Ras C, Wu L, van Gulik WM, Heijnen JJ., Biotechnol. Bioeng. 88(2), 2004
PMID: 15449293
Bayes statistics and markov chain monte carlo simulation: an alternative method for parameter identification and error estimation
von, 2004
Phosphorus assimilation and control of the phosphate regulon
Wanner, 1996
Towards improving production of fine chemicals by systems biology: amino acid production by Corynebacterium glutamicum
Wendisch, Chim. Oggi 23(), 2005
Phosphorus metabolism of Corynebacterium glutamicum
Wendisch, 2005
The evolution of molecular biology into systems biology.
Westerhoff HV, Palsson BO., Nat. Biotechnol. 22(10), 2004
PMID: 15470464
13C metabolic flux analysis.
Wiechert W., Metab. Eng. 3(3), 2001
PMID: 11461141
Modeling and simulation: tools for metabolic engineering.
Wiechert W., J. Biotechnol. 94(1), 2002
PMID: 11792451
Validation of metabolic models: concepts, tools, and problems
Wiechert, 2004
From stationary to instationary metabolic flux analysis.
Wiechert W, Noh K., Adv. Biochem. Eng. Biotechnol. 92(), 2005
PMID: 15791936
Metabolic isotopomer labeling systems. Part I: global dynamic behavior.
Wiechert W, Wurzel M., Math Biosci 169(2), 2001
PMID: 11166321
Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale.
Wittmann C, Kim HM, Heinzle E., Biotechnol. Bioeng. 87(1), 2004
PMID: 15211482
Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation.
Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121068

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16406159
PubMed | Europe PMC

Search this title in

Google Scholar