Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria

Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G (2008)
Journal of Applied Microbiology 105(4): 951-962.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Aims: The design and evaluation of an oligonucleotide microarray in order to detect and identify viable bacterial species that play a significant role in beer spoilage. These belong to the species of the genera Lactobacillus, Megasphaera, Pediococcus and Pectinatus. Methods and Results: Oligonucleotide probes specific to beer spoilage bacteria were designed. In order to detect viable bacteria, the probes were designed to target the intergenic spacer regions (ISR) between 16S and 23S rRNA. Prior to hybridization the ISR were amplified by combining reverse transcriptase and polymerase chain reactions using a designed consenus primer. The developed oligonucleotide microarrays allows the detection of viable beer spoilage bacteria. Conclusions: This method allows the detection and discrimination of single bacterial species in a sample containing complex microbial community. Furthermore, microarrays using oligonucleotide probes targeting the ISR allow the distinction between viable bacteria with the potential to grow and non growing bacteria. Significance and Impact of the Study: The results demonstrate the feasibility of oligonucleotide microarrays as a contamination control in food industry for the detection and identification of spoilage micro-organisms within a mixed population.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Weber DG, Sahm K, Polen T, Wendisch VF, Antranikian G. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology. 2008;105(4):951-962.
Weber, D. G., Sahm, K., Polen, T., Wendisch, V. F., & Antranikian, G. (2008). Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology, 105(4), 951-962.
Weber, D. G., Sahm, K., Polen, T., Wendisch, V. F., and Antranikian, G. (2008). Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology 105, 951-962.
Weber, D.G., et al., 2008. Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology, 105(4), p 951-962.
D.G. Weber, et al., “Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria”, Journal of Applied Microbiology, vol. 105, 2008, pp. 951-962.
Weber, D.G., Sahm, K., Polen, T., Wendisch, V.F., Antranikian, G.: Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria. Journal of Applied Microbiology. 105, 951-962 (2008).
Weber, D. G., Sahm, K., Polen, T., Wendisch, Volker F., and Antranikian, G. “Oligonucleotide microarrays for the detection and identification of viable beer spoilage bacteria”. Journal of Applied Microbiology 105.4 (2008): 951-962.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

Fluorescence-based bioassays for the detection and evaluation of food materials.
Nishi K, Isobe S, Zhu Y, Kiyama R., Sensors (Basel) 15(10), 2015
PMID: 26473869
Amplicon sequencing for the quantification of spoilage microbiota in complex foods including bacterial spores.
de Boer P, Caspers M, Sanders JW, Kemperman R, Wijman J, Lommerse G, Roeselers G, Montijn R, Abee T, Kort R., Microbiome 3(), 2015
PMID: 26217487
Lipidomics as an important key for the identification of beer-spoilage bacteria.
Rezanka T, Matoulkova D, Benada O, Sigler K., Lett. Appl. Microbiol. 60(6), 2015
PMID: 25773514
Identification of beer-spoilage bacteria using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Wieme AD, Spitaels F, Aerts M, De Bruyne K, Van Landschoot A, Vandamme P., Int. J. Food Microbiol. 185(), 2014
PMID: 24929682
Nucleic acid detection technologies and marker molecules in bacterial diagnostics.
Scheler O, Glynn B, Kurg A., Expert Rev. Mol. Diagn. 14(4), 2014
PMID: 24724586
In situ production of human β defensin-3 in lager yeasts provides bactericidal activity against beer-spoiling bacteria under fermentation conditions.
James TC, Gallagher L, Titze J, Bourke P, Kavanagh J, Arendt E, Bond U., J. Appl. Microbiol. 116(2), 2014
PMID: 24176036
Guide to designing, conducting, publishing and communicating results of clinical studies involving probiotic applications in human participants.
Shane AL, Cabana MD, Vidry S, Merenstein D, Hummelen R, Ellis CL, Heimbach JT, Hempel S, Lynch SV, Sanders ME, Tancredi DJ., Gut Microbes 1(4), 2010
PMID: 21327031
Community dynamics of bacteria in sourdough fermentations as revealed by their metatranscriptome.
Weckx S, Van der Meulen R, Allemeersch J, Huys G, Vandamme P, Van Hummelen P, De Vuyst L., Appl. Environ. Microbiol. 76(16), 2010
PMID: 20581179
Target amplification for broad spectrum microbial diagnostics and detection.
Leski TA, Malanoski AP, Stenger DA, Lin B., Future Microbiol 5(2), 2010
PMID: 20143944
Improved Enrichment Cultivation of Beer Spoiling Lactic Acid Bacteria by Continuous Glucose Addition to the Culture.
Taskila Sanna, Neubauer Peter, Tuomola Mika, Breitenstein Antje, Kronlof Jukka, Hillukkala Tomi., J. Inst. Brew. 115(3), 2009
PMID: IND44308970
Microbial communities in industrial environment.
Maukonen J, Saarela M., Curr. Opin. Microbiol. 12(3), 2009
PMID: 19447068

67 References

Data provided by Europe PubMed Central.

Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp.
Keramas G, Bang DD, Lund M, Madsen M, Rasmussen SE, Bunkenborg H, Telleman P, Christensen CB., Mol. Cell. Probes 17(4), 2003
PMID: 12944122
Ribotyping of lactobacilli isolated from spoiled beer.
Yansanjav A, Svec P, Sedlacek I, Hollerova I, Nemec M., FEMS Microbiol. Lett. 229(1), 2003
PMID: 14659554
DNA arrays for analysis of gene expression.
Eisen MB, Brown PO., Meth. Enzymol. 303(), 1999
PMID: 10349646
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
Oligonucleotide microarray for identification of Bacillus anthracis based on intergenic transcribed spacers in ribosomal DNA.
Nubel U, Schmidt PM, Reiss E, Bier F, Beyer W, Naumann D., FEMS Microbiol. Lett. 240(2), 2004
PMID: 15522510
Microarray-based, high-throughput gene expression profiling of microRNAs.
Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z., Nat. Methods 1(2), 2004
PMID: 15782179
Waterborne pathogen detection by use of oligonucleotide-based microarrays.
Maynard C, Berthiaume F, Lemarchand K, Harel J, Payment P, Bayardelle P, Masson L, Brousseau R., Appl. Environ. Microbiol. 71(12), 2005
PMID: 16332846
Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
Schena M, Shalon D, Davis RW, Brown PO., Science 270(5235), 1995
PMID: 7569999
tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis.
Loughney K, Lund E, Dahlberg JE., Nucleic Acids Res. 10(5), 1982
PMID: 6280153
Detection of viable Vibrio cholerae by reverse-transcriptase polymerase chain reaction (RT-PCR).
Bej AK, Ng WY, Morgan S, Jones DD, Mahbubani MH., Mol. Biotechnol. 5(1), 1996
PMID: 8853011
Hybridization of DNA targets to glass-tethered oligonucleotide probes.
Beattie WG, Meng L, Turner SL, Varma RS, Dao DD, Beattie KL., Mol. Biotechnol. 4(3), 1995
PMID: 8680928

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18785882
PubMed | Europe PMC

Search this title in

Google Scholar