Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production

Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005)
Applied and Environmental Microbiology 71(10): 5920-5928.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ;
Abstract
Gene expression changes of glutamate-producing Corynebacterium glutamicum were identified in transcriptome comparisons by DNA microarray analysis. During glutamate production induced by a temperature shift, C glutamicum strain 2262 showed significantly higher mRNA levels of the NCgl2816 and NCgl2817 genes than its non-glutamate- producing derivative 2262NP. Reverse transcription-PCR analysis showed that the two genes together constitute an operon. NCgl2816 putatively codes for a lactate permease, while NCgl2817 was demonstrated to encode quinone-dependent L-lactate dehydrogenase, which was named LldD. C. glutamicum LldD displayed Michaelis-Menten kinetics for the substrate L-lactate with a K-m of about 0.51 mM. The specific activity of LIdD was about 10-fold higher during growth on L-lactate or on an L-lactate-glucose mixture than during growth on glucose, D-lactate, or pyruvate, while the specific activity of quinone-dependent D-lactate dehydrogenase differed little with the carbon source. RNA levels of NCg12816 and ildD were about 18-fold higher during growth on L-lactate than on pyruvate. Disruption of the NCg12816-ildD operon resulted in loss of the ability to utilize L-lactate as the sole carbon source. Expression of ildD restored L-lactate utilization, indicating that the function of the permease gene NCgl2816 is dispensable, while LIdD is essential, for growth of C. glutamicum on L-lactate.
Publishing Year
ISSN
PUB-ID

Cite this

Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Applied and Environmental Microbiology. 2005;71(10):5920-5928.
Stansen, C., Uy, D., Delaunay, S., Eggeling, L., Goergen, J. L., & Wendisch, V. F. (2005). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Applied and Environmental Microbiology, 71(10), 5920-5928.
Stansen, C., Uy, D., Delaunay, S., Eggeling, L., Goergen, J. L., and Wendisch, V. F. (2005). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Applied and Environmental Microbiology 71, 5920-5928.
Stansen, C., et al., 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Applied and Environmental Microbiology, 71(10), p 5920-5928.
C. Stansen, et al., “Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production”, Applied and Environmental Microbiology, vol. 71, 2005, pp. 5920-5928.
Stansen, C., Uy, D., Delaunay, S., Eggeling, L., Goergen, J.L., Wendisch, V.F.: Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Applied and Environmental Microbiology. 71, 5920-5928 (2005).
Stansen, C., Uy, D., Delaunay, S., Eggeling, L., Goergen, J. L., and Wendisch, Volker F. “Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production”. Applied and Environmental Microbiology 71.10 (2005): 5920-5928.
This data publication is cited in the following publications:
This publication cites the following data publications:

71 Citations in Europe PMC

Data provided by Europe PubMed Central.

Production of the Marine Carotenoid Astaxanthin by Metabolically Engineered Corynebacterium glutamicum.
Henke NA, Heider SA, Peters-Wendisch P, Wendisch VF., Mar Drugs 14(7), 2016
PMID: 27376307
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M., Appl. Environ. Microbiol. 81(21), 2015
PMID: 26276118
Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum.
Nguyen AQ, Schneider J, Reddy GK, Wendisch VF., Metabolites 5(2), 2015
PMID: 25919117
Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.
Sheng B, Xu J, Zhang Y, Jiang T, Deng S, Kong J, Gao C, Ma C, Xu P., Appl. Environ. Microbiol. 81(12), 2015
PMID: 25862219
IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum.
Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., FEBS J. 281(21), 2014
PMID: 25181035
Lactate production as representative of the fermentation potential of Corynebacterium glutamicum 2262 in a one-step process.
Khuat HB, Kabore AK, Olmos E, Fick M, Boudrant J, Goergen JL, Delaunay S, Guedon E., Biosci. Biotechnol. Biochem. 78(2), 2014
PMID: 25036691
Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1.
Chiu KC, Lin CJ, Shaw GC., Microbiology (Reading, Engl.) 160(Pt 10), 2014
PMID: 25031425
Microbial lactate utilization: enzymes, pathogenesis, and regulation.
Jiang T, Gao C, Ma C, Xu P., Trends Microbiol. 22(10), 2014
PMID: 24950803
Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF., J. Biotechnol. 191(), 2014
PMID: 24910970
Metabolic engineering of Corynebacterium glutamicum for glycolate production.
Zahoor A, Otten A, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486442
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.
Peters-Wendisch P, Gotker S, Heider SA, Komati Reddy G, Nguyen AQ, Stansen KC, Wendisch VF., J. Biotechnol. 192 Pt B(), 2014
PMID: 24486440
Process inhomogeneity leads to rapid side product turnover in cultivation of Corynebacterium glutamicum.
Kaß F, Junne S, Neubauer P, Wiechert W, Oldiges M., Microb. Cell Fact. 13(), 2014
PMID: 24410842
Role of flavohaemoprotein Hmp and nitrate reductase NarGHJI of Corynebacterium glutamicum for coping with nitrite and nitrosative stress.
Platzen L, Koch-Koerfges A, Weil B, Brocker M, Bott M., FEMS Microbiol. Lett. 350(2), 2014
PMID: 24237595
OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum.
Boulahya KA, Guedon E, Delaunay S, Schultz C, Boudrant J, Bott M, Goergen JL., Appl. Microbiol. Biotechnol. 87(5), 2010
PMID: 20449744

45 References

Data provided by Europe PubMed Central.

Transport of L-Lactate, D-Lactate, and glycolate by the LldP and GlcA membrane carriers of Escherichia coli.
Nunez MF, Kwon O, Wilson TH, Aguilar J, Baldoma L, Lin EC., Biochem. Biophys. Res. Commun. 290(2), 2002
PMID: 11785976

AUTHOR UNKNOWN, 1993
Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum.
Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ., J. Mol. Microbiol. Biotechnol. 3(2), 2001
PMID: 11321586
Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays.
Polen T, Wendisch VF., Appl. Biochem. Biotechnol. 118(1-3), 2004
PMID: 15304751
An NAD + -independent L-lactate dehydrogenase from Rhizopus oryzae.
Pritchard GG., Biochim. Biophys. Acta 250(1), 1971
PMID: 4334855
Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane.
Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M., Microbiology (Reading, Engl.) 147(Pt 5), 2001
PMID: 11320139
Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum.
Radmacher E, Stansen KC, Besra GS, Alderwick LJ, Maughan WN, Hollweg G, Sahm H, Wendisch VF, Eggeling L., Microbiology (Reading, Engl.) 151(Pt 5), 2005
PMID: 15870446

AUTHOR UNKNOWN, 1989
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325

AUTHOR UNKNOWN, 1968
Efficient electrotransformation of corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1.
Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J., Curr. Microbiol. 45(5), 2002
PMID: 12232668
Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process.
Uy D, Delaunay S, Germain P, Engasser JM, Goergen JL., J. Biotechnol. 104(1-3), 2003
PMID: 12948637

AUTHOR UNKNOWN, 0
Molecular structure of flavocytochrome b2 at 2.4 A resolution.
Xia ZX, Mathews FS., J. Mol. Biol. 212(4), 1990
PMID: 2329585

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 16204505
PubMed | Europe PMC

Search this title in

Google Scholar