The global gene expression response of Escherichia coli to L-phenylalanine

Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF (2005)
Journal of Biotechnology 115(3): 221-237.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
We investigated the global gene expression changes of Escherichia coli due to the presence of different concentrations of phenylalanine or shikimate in the growth medium. The response to 0.5 g l(-1) phenylalanine primarily reflected a perturbed aromatic amino acid metabolism, in particular due to TyrR-mediated regulation. The addition of 5 g l(-1) phenylalanine reduced the growth rate by half and elicited a great number of likely indirect effects on genes regulated in response to changed pH, nitrogen or carbon availability. Consistent with the observed gene expression changes, supplementation with shikimate, tyrosine and tryptophan relieved growth inhibition by phenylalanine. In contrast to the wild-type, a tyrR disruption strain showed increased expression of pckA and of tktB in the presence of phenylalanine, but its growth was not affected by phenylalanine at the concentrations tested. The absence of growth inhibition by phenylalanine suggested that at high phenylalanine concentrations TyrR-defective strains might perform better in phenylalanine production. (C) 2004 Elsevier B.V. All rights reserved.
Publishing Year
ISSN
PUB-ID

Cite this

Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF. The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology. 2005;115(3):221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., & Wendisch, V. F. (2005). The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology, 115(3), 221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., and Wendisch, V. F. (2005). The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology 115, 221-237.
Polen, T., et al., 2005. The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology, 115(3), p 221-237.
T. Polen, et al., “The global gene expression response of Escherichia coli to L-phenylalanine”, Journal of Biotechnology, vol. 115, 2005, pp. 221-237.
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., Wendisch, V.F.: The global gene expression response of Escherichia coli to L-phenylalanine. Journal of Biotechnology. 115, 221-237 (2005).
Polen, T., Krämer, M., Bongaerts, J., Wubbolts, M., and Wendisch, Volker F. “The global gene expression response of Escherichia coli to L-phenylalanine”. Journal of Biotechnology 115.3 (2005): 221-237.
This data publication is cited in the following publications:
This publication cites the following data publications:

21 Citations in Europe PMC

Data provided by Europe PubMed Central.

Synthesis of chemicals by metabolic engineering of microbes.
Sun X, Shen X, Jain R, Lin Y, Wang J, Sun J, Wang J, Yan Y, Yuan Q., Chem Soc Rev 44(11), 2015
PMID: 25940754
Production of salidroside in metabolically engineered Escherichia coli.
Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, Zhang X, Liu T, Ma Y., Sci Rep 4(), 2014
PMID: 25323006
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds.
Rodriguez A, Martinez JA, Flores N, Escalante A, Gosset G, Bolivar F., Microb. Cell Fact. 13(1), 2014
PMID: 25200799
The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation.
Lango-Scholey L, Brachmann AO, Bode HB, Clarke DJ., PLoS ONE 8(11), 2013
PMID: 24278476
Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.
Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior BA, Wang Z., Biotechnol. Adv. 31(8), 2013
PMID: 23473968
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF., Microb Biotechnol 6(2), 2013
PMID: 23164409
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM., Appl. Microbiol. Biotechnol. 92(5), 2011
PMID: 21796382
Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Kramer R, Wendisch VF., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21478323
Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches.
Cao B, Nagarajan K, Loh KC., Appl. Microbiol. Biotechnol. 85(2), 2009
PMID: 19730850
Application of systems biology for bioprocess development.
Park JH, Lee SY, Kim TY, Kim HU., Trends Biotechnol. 26(8), 2008
PMID: 18582974
Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production.
Wierckx NJ, Ballerstedt H, de Bont JA, de Winde JH, Ruijssenaars HJ, Wery J., J. Bacteriol. 190(8), 2008
PMID: 17993537
Perspectives of biotechnological production of L-tyrosine and its applications.
Lutke-Eversloh T, Santos CN, Stephanopoulos G., Appl. Microbiol. Biotechnol. 77(4), 2007
PMID: 17968539
L-tyrosine production by deregulated strains of Escherichia coli.
Lutke-Eversloh T, Stephanopoulos G., Appl. Microbiol. Biotechnol. 75(1), 2007
PMID: 17221195
DNA microarray technology for the microbiologist: an overview.
Ehrenreich A., Appl. Microbiol. Biotechnol. 73(2), 2006
PMID: 17043830
The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
Nijkamp K, van Luijk N, de Bont JA, Wery J., Appl. Microbiol. Biotechnol. 69(2), 2005
PMID: 15824922

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 15639085
PubMed | Europe PMC

Search this title in

Google Scholar