Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum

Georgi T, Engels V, Wendisch VF (2008)
Journal of Bacteriology 190(3): 963-971.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
Corynebacterium glutamicum can grow on L-lactate as a sole carbon and energy source. The NCg12816-lldD operon encoding a putative transporter (NCg12816) and a quinone-dependent L-lactate dehydrogenase (LldD) is required for L-lactate utilization. DNA affinity chromatography revealed that the FadR-type regulator LldR (encoded by NCg12814) binds to the upstream region of NCg12816-lldD. Overexpression of lldR resulted in strongly reduced NCg12816-lldD mRNA levels and strongly reduced LldD activity, and as a consequence, a severe growth defect was observed in cells grown on L-lactate as the sole carbon and energy source, but not in cells grown on glucose, ribose, or acetate. Deletion of lldR had no effect on growth on these carbon sources but resulted in high NCg12816-lldD mRNA levels and high LldD activity in the presence and absence Of L-lactate. Purified His-tagged LldR bound to a 54-bp fragment of the NCg12816-lldD promoter, which overlaps with the transcriptional start site determined by random amplification of cDNA ends-PCR and contains a putative operator motif typical of FadR-type regulators, which is (-1)TNGTNNNACNA(10). Mutational analysis revealed that this motif with hyphenated dyad symmetry is essential for binding of LldD to the NCg12816-lldD promoter. L-Lactate, but not D-lactate, interfered with binding of LldR Hi, to the NCg12816-lldD promoter. Thus, during growth on media lacking L-lactate, LldR represses expression of NCg12816-lldD. In the presence Of L-lactate in the growth medium or under conditions leading to intracellular L-lactate accumulation, the L-lactate utilization operon is induced.
Publishing Year
ISSN
PUB-ID

Cite this

Georgi T, Engels V, Wendisch VF. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology. 2008;190(3):963-971.
Georgi, T., Engels, V., & Wendisch, V. F. (2008). Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology, 190(3), 963-971.
Georgi, T., Engels, V., and Wendisch, V. F. (2008). Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology 190, 963-971.
Georgi, T., Engels, V., & Wendisch, V.F., 2008. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology, 190(3), p 963-971.
T. Georgi, V. Engels, and V.F. Wendisch, “Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum”, Journal of Bacteriology, vol. 190, 2008, pp. 963-971.
Georgi, T., Engels, V., Wendisch, V.F.: Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. Journal of Bacteriology. 190, 963-971 (2008).
Georgi, T., Engels, V., and Wendisch, Volker F. “Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum”. Journal of Bacteriology 190.3 (2008): 963-971.
This data publication is cited in the following publications:
This publication cites the following data publications:

22 Citations in Europe PMC

Data provided by Europe PubMed Central.

Enantioselective regulation of lactate racemization by LarR in Lactobacillus plantarum.
Desguin B, Goffin P, Bakouche N, Diman A, Viaene E, Dandoy D, Fontaine L, Hallet B, Hols P., J. Bacteriol. 197(1), 2015
PMID: 25349156
Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1.
Chiu KC, Lin CJ, Shaw GC., Microbiology (Reading, Engl.) 160(Pt 10), 2014
PMID: 25031425
Microbial lactate utilization: enzymes, pathogenesis, and regulation.
Jiang T, Gao C, Ma C, Xu P., Trends Microbiol. 22(10), 2014
PMID: 24950803
A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells.
San Martin A, Ceballo S, Ruminot I, Lerchundi R, Frommer WB, Barros LF., PLoS ONE 8(2), 2013
PMID: 23469056
Corynebacterium glutamicum promoters: a practical approach.
Patek M, Holatko J, Busche T, Kalinowski J, Nesvera J., Microb Biotechnol 6(2), 2013
PMID: 23305350
Preferential utilization of D-lactate by Shewanella oneidensis.
Brutinel ED, Gralnick JA., Appl. Environ. Microbiol. 78(23), 2012
PMID: 23001660
Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa.
Gao C, Hu C, Zheng Z, Ma C, Jiang T, Dou P, Zhang W, Che B, Wang Y, Lv M, Xu P., J. Bacteriol. 194(10), 2012
PMID: 22408166
Quinone-dependent D-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on D-lactate.
Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF., BMC Microbiol. 10(), 2010
PMID: 21159175
Visualizing post genomics data-sets on customized pathway maps by ProMeTra-aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example.
Neuweger H, Persicke M, Albaum SP, Bekel T, Dondrup M, Huser AT, Winnebald J, Schneider J, Kalinowski J, Goesmann A., BMC Syst Biol 3(), 2009
PMID: 19698148
Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 191(17), 2009
PMID: 19581365
Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H., Appl. Environ. Microbiol. 75(11), 2009
PMID: 19346355
Regulation of ldh expression during biotin-limited growth of Corynebacterium glutamicum.
Dietrich C, Nato A, Bost B, Le Marechal P, Guyonvarch A., Microbiology (Reading, Engl.) 155(Pt 4), 2009
PMID: 19332837
Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization.
Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, Watanabe N, Tanaka I, Yao M., Nucleic Acids Res. 36(22), 2008
PMID: 18988622
Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
Youn JW, Jolkver E, Kramer R, Marin K, Wendisch VF., J. Bacteriol. 190(19), 2008
PMID: 18658264

59 References

Data provided by Europe PubMed Central.

Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
S-layer protein production by Corynebacterium strains is dependent on the carbon source.
Soual-Hoebeke E, de Sousa-D'Auria C, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G., Microbiology (Reading, Engl.) 145 ( Pt 12)(), 1999
PMID: 10627038
Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production.
Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF., Appl. Environ. Microbiol. 71(10), 2005
PMID: 16204505

AUTHOR UNKNOWN, 2005

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 18039772
PubMed | Europe PMC

Search this title in

Google Scholar