MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula.

Henckel K, Küster H, Stutz L, Goesmann A (2010)
BMC Research Notes 3(1).

Download
OA
Journal Article | Published | English
Abstract
BACKGROUND:Expressed Sequence Tags (ESTs) are in general used to gain a first insight into gene activities from a species of interest. Subsequently, and typically based on a combination of EST and genome sequences, microarray-based expression analyses are performed for a variety of conditions. In some cases, a multitude of EST and microarray experiments are conducted for one species, covering different tissues, cell states, and cell types. Under these circumstances, the challenge arises to combine results derived from the different expression profiling strategies, with the goal to uncover novel information on the basis of the integrated datasets.FINDINGS:Using our new application, MediPlEx (MEDIcago truncatula multiPLe EXpression analysis), expression data from EST experiments, oligonucleotide microarrays and Affymetrix GeneChips can be combined and analyzed, leading to a novel approach to integrated transcriptome analysis. We have validated our tool via the identification of a set of well-characterized AM-specific and AM-induced marker genes, identified by MediPlEx on the basis of in silico and experimental gene expression profiles from roots colonized with AM fungi.CONCLUSIONS:MediPlEx offers an integrated analysis pipeline for different sets of expression data generated for the model legume Medicago truncatula. As expected, in silico and experimental gene expression data that cover the same biological condition correlate well. The collection of differentially expressed genes identified via MediPlEx provides a starting point for functional studies in plant mutants. MediPlEx can freely be used at http://www.cebitec.uni-bielefeld.de/mediplex.
Publishing Year
ISSN
PUB-ID

Cite this

Henckel K, Küster H, Stutz L, Goesmann A. MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes. 2010;3(1).
Henckel, K., Küster, H., Stutz, L., & Goesmann, A. (2010). MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes, 3(1).
Henckel, K., Küster, H., Stutz, L., and Goesmann, A. (2010). MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes 3.
Henckel, K., et al., 2010. MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes, 3(1).
K. Henckel, et al., “MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula.”, BMC Research Notes, vol. 3, 2010.
Henckel, K., Küster, H., Stutz, L., Goesmann, A.: MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes. 3, (2010).
Henckel, Kolja, Küster, Helge, Stutz, Leonhard, and Goesmann, Alexander. “MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula.”. BMC Research Notes 3.1 (2010).
Main File(s)
Access Level
OA Open Access
Last Uploaded
2012-02-16 08:00:27

This data publication is cited in the following publications:
This publication cites the following data publications:

47 References

Data provided by Europe PubMed Central.

Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology.
Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD., BMC Genomics 7(), 2006
PMID: 17062153
Annotating the genome of Medicago truncatula.
Town CD., Curr. Opin. Plant Biol. 9(2), 2006
PMID: 16458040
The Sequence Analysis and Management System -- SAMS-2.0: data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies.
Bekel T, Henckel K, Kuster H, Meyer F, Mittard Runte V, Neuweger H, Paarmann D, Rupp O, Zakrzewski M, Puhler A, Stoye J, Goesmann A., J. Biotechnol. 140(1-2), 2009
PMID: 19297685
Java
AUTHOR UNKNOWN, 0
Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula.
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Kuster H., Functional plant biology : FPB. 33(8), 2006
PMID: IND43838506
A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis.
Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ., Proc. Natl. Acad. Sci. U.S.A. 104(5), 2007
PMID: 17242358
A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene.
Doll J, Hause B, Demchenko K, Pawlowski K, Krajinski F., Plant Cell Physiol. 44(11), 2003
PMID: 14634158
Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula.
Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 16(4), 2003
PMID: 12744459
Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes.
Frenzel A, Manthey K, Perlick AM, Meyer F, Puhler A, Kuster H, Krajinski F., Mol. Plant Microbe Interact. 18(8), 2005
PMID: 16134889
Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile.
Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P., Plant Mol. Biol. 55(4), 2004
PMID: 15604700
Simcluster: clustering enumeration gene expression data on the simplex space.
Vencio RZ, Varuzza L, de B Pereira CA, Brentani H, Shmulevich I., BMC Bioinformatics 8(), 2007
PMID: 17625017
Serial analysis of gene expression.
Velculescu VE, Zhang L, Vogelstein B, Kinzler KW., Science 270(5235), 1995
PMID: 7570003
Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays.
Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K., Nat. Biotechnol. 18(6), 2000
PMID: 10835600
Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression.
Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K., Nat. Genet. 2(3), 1992
PMID: 1345164
Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach.
Bainbridge MN, Warren RL, Hirst M, Romanuik T, Zeng T, Go A, Delaney A, Griffith M, Hickenbotham M, Magrini V, Mardis ER, Sadar MD, Siddiqui AS, Marra MA, Jones SJ., BMC Genomics 7(), 2006
PMID: 17010196

AUTHOR UNKNOWN, 1986
Simplicial inference. Algebraic methods in statistics and probability. AMS special session on algebraic methods in statistics
AUTHOR UNKNOWN, 2001
Basic Local Alignment Search Tool
AUTHOR UNKNOWN, 1990
InterPro and InterProScan: tools for protein sequence classification and comparison.
Mulder N, Apweiler R., Methods Mol. Biol. 396(), 2007
PMID: 18025686
Profile hidden Markov models.
Eddy SR., Bioinformatics 14(9), 1998
PMID: 9918945

AUTHOR UNKNOWN, 2008

Export

0 Marked Publications

Open Data PUB

Sources

PMID: 20958970
PubMed | Europe PMC

Search this title in

Google Scholar