The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$

Müller C, Gigolashvili T, Yatusevich R, Berger B, Flügge U-I (2007)
The Plant Journal 51(2): 247-261.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Publishing Year
ISSN
PUB-ID

Cite this

Müller C, Gigolashvili T, Yatusevich R, Berger B, Flügge U-I. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$. The Plant Journal. 2007;51(2):247-261.
Müller, C., Gigolashvili, T., Yatusevich, R., Berger, B., & Flügge, U. - I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$. The Plant Journal, 51(2), 247-261. doi:10.1111/j.1365-313X.2007.03133.x
Müller, C., Gigolashvili, T., Yatusevich, R., Berger, B., and Flügge, U. - I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$. The Plant Journal 51, 247-261.
Müller, C., et al., 2007. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$. The Plant Journal, 51(2), p 247-261.
C. Müller, et al., “The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$”, The Plant Journal, vol. 51, 2007, pp. 247-261.
Müller, C., Gigolashvili, T., Yatusevich, R., Berger, B., Flügge, U.-I.: The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$. The Plant Journal. 51, 247-261 (2007).
Müller, Caroline, Gigolashvili, T., Yatusevich, R., Berger, B., and Flügge, U.-I. “The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in $Arabidopsis$ $thaliana$”. The Plant Journal 51.2 (2007): 247-261.
This data publication is cited in the following publications:
This publication cites the following data publications:

129 Citations in Europe PMC

Data provided by Europe PubMed Central.

Sulfur metabolism and its manipulation in crops.
Koprivova A, Kopriva S., J Genet Genomics 43(11), 2016
PMID: 27582269
Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants.
Paudel JR, Amirizian A, Krosse S, Giddings J, Ismail SA, Xia J, Gloer JB, van Dam NM, Bede JC., BMC Plant Biol. 16(), 2016
PMID: 27001610

72 References

Data provided by Europe PubMed Central.

Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana.
Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J., Phytochemistry 59(6), 2002
PMID: 11867099
Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates.
Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K., Plant Cell 13(2), 2001
PMID: 11226190
A conserved transcript pattern in response to a specialist and a generalist herbivore.
Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE., Plant Cell 16(11), 2004
PMID: 15494554
Source-sink regulation by sugar and stress.
Roitsch T., Curr. Opin. Plant Biol. 2(3), 1999
PMID: 10375568
Sugar sensing and signaling in plants
Rolland, Plant Cell 14(), 2002
Phosphate Modulates Transcription of Soybean VspB and Other Sugar-Inducible Genes.
Sadka A, DeWald DB, May GD, Park WD, Mullet JE., Plant Cell 6(5), 1994
PMID: 12244255
Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis.
Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H., Plant J. 44(4), 2005
PMID: 16262714
Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study.
Shapiro TA, Fahey JW, Dinkova-Kostova AT, Holtzclaw WD, Stephenson KK, Wade KL, Ye L, Talalay P., Nutr Cancer 55(1), 2006
PMID: 16965241
DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis.
Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I., Plant J. 47(1), 2006
PMID: 16740150
The R2R3-MYB gene family in Arabidopsis thaliana.
Stracke R, Werber M, Weisshaar B., Curr. Opin. Plant Biol. 4(5), 2001
PMID: 11597504
The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses.
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ., Plant J. 43(1), 2005
PMID: 15960624
Biofumigant compounds released by field pennycress (Thlaspi arvense) seedmeal.
Vaughn SF, Isbell TA, Weisleder D, Berhow MA., J. Chem. Ecol. 31(1), 2005
PMID: 15839488
Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants.
Voinnet O, Pinto YM, Baulcombe DC., Proc. Natl. Acad. Sci. U.S.A. 96(24), 1999
PMID: 10570213
Constitutive plant toxins and their role in defense against herbivores and pathogens.
Wittstock U, Gershenzon J., Curr. Opin. Plant Biol. 5(4), 2002
PMID: 12179963
The role of hexokinase in plant sugar signal transduction and growth and development.
Xiao W, Sheen J, Jang JC., Plant Mol. Biol. 44(4), 2000
PMID: 11197321
GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox.
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W., Plant Physiol. 136(1), 2004
PMID: 15375207

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 17521412
PubMed | Europe PMC

Search this title in

Google Scholar