Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.

Barsch A, Patschkowski T, Niehaus K (2004)
Funct Integr Genomics 4(4): 219-230.

Journal Article | Published | English

No fulltext has been uploaded

Abstract
A metabolite analysis of the soil bacterium Sinorhizobium meliloti was established as a first step towards a better understanding of the symbiosis with its host plant Medicago truncatula. A crucial step was the development of fast harvesting and extraction methods for the bacterial metabolites because of rapid changes in their composition. S. meliloti 1021 cell cultures grown in minimal medium were harvested by centrifugation, filtration or immediate freezing in liquid nitrogen followed by a lyophilisation step. Bacteria were lysed mechanically in methanol and hydrophilic compounds were analysed after methoxymation and silylisation via GC-MS. The different compounds were identified by comparison with the NIST 98 database and available standards. From about 200 peaks in each chromatogram 65 compounds have been identified so far. A comparison of the different extraction methods giving the metabolite composition revealed clear changes in several amino acids and amino acid precursor pools. A principal component analysis (PCA) was able to distinguish S. meliloti cells grown on different carbon sources based on their metabolite profile. A comparison of the metabolite composition of a S. meliloti leucine auxotrophic mutant with the wild type revealed a marked accumulation of 2-isopropylmalate in the mutant. Interestingly, the accumulated metabolite is not the direct substrate of the mutated enzyme, 3-isopropylmalate dehydrogenase, but the substrate of isopropylmalate isomerase, which acts one step further upstream in the biosynthetic pathway of leucine. This finding further emphasises the importance of integrating metabolic data into post-genomic research.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Barsch A, Patschkowski T, Niehaus K. Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics. 2004;4(4):219-230.
Barsch, A., Patschkowski, T., & Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics, 4(4), 219-230.
Barsch, A., Patschkowski, T., and Niehaus, K. (2004). Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics 4, 219-230.
Barsch, A., Patschkowski, T., & Niehaus, K., 2004. Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics, 4(4), p 219-230.
A. Barsch, T. Patschkowski, and K. Niehaus, “Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.”, Funct Integr Genomics, vol. 4, 2004, pp. 219-230.
Barsch, A., Patschkowski, T., Niehaus, K.: Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct Integr Genomics. 4, 219-230 (2004).
Barsch, A., Patschkowski, Thomas, and Niehaus, Karsten. “Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry.”. Funct Integr Genomics 4.4 (2004): 219-230.
This data publication is cited in the following publications:
This publication cites the following data publications:

23 Citations in Europe PMC

Data provided by Europe PubMed Central.

The perinatal transition of the circulating metabolome in a nonhuman primate.
Beckstrom AC, Tanya P, Humston EM, Snyder LR, Synovec RE, Juul SE., Pediatr. Res. 71(4 Pt 1), 2012
PMID: 22391633
The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii.
Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O., J. Biol. Chem. 285(39), 2010
PMID: 20581114
Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene.
Keum YS, Seo JS, Li QX, Kim JH., Appl. Microbiol. Biotechnol. 80(5), 2008
PMID: 18668240
Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity.
Jacob AI, Adham SA, Capstick DS, Clark SR, Spence T, Charles TC., Mol. Plant Microbe Interact. 21(7), 2008
PMID: 18533838
Retention index thresholds for compound matching in GC-MS metabolite profiling.
Strehmel N, Hummel J, Erban A, Strassburg K, Kopka J., J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871(2), 2008
PMID: 18501684
Identification of genes relevant to symbiosis and competitiveness in Sinorhizobium meliloti using signature-tagged mutants.
Pobigaylo N, Szymczak S, Nattkemper TW, Becker A., Mol. Plant Microbe Interact. 21(2), 2008
PMID: 18184066
Metabolomics: current state and evolving methodologies and tools.
Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C., Appl. Microbiol. Biotechnol. 76(3), 2007
PMID: 17665194
An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti.
Cowie A, Cheng J, Sibley CD, Fong Y, Zaheer R, Patten CL, Morton RM, Golding GB, Finan TM., Appl. Environ. Microbiol. 72(11), 2006
PMID: 16963549
Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations.
Barsch A, Tellstrom V, Patschkowski T, Kuster H, Niehaus K., Mol. Plant Microbe Interact. 19(9), 2006
PMID: 16941904
Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry.
Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD., J Chromatogr A 1125(1), 2006
PMID: 16759663
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548

Export

0 Marked Publications

Open Data PUB

Sources

PMID: 15372312
PubMed | Europe PMC

Search this title in

Google Scholar