Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth

Carrari F, Coll-Garcia D, Schauer N, Lytovchenko A, Palacios-Rojas N, Balbo I, Rosso MG, Fernie AR (2005)
Plant Physiology 137(1): 70-82.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Abstract / Bemerkung
An Arabidopsis (Arabidopsis thaliana) L. Heynh mutant deficient in an isoform of adenylate kinase (ADK; At2g37250) was isolated by reverse genetics. It contains a T-DNA insertion 377 bp downstream of the start point of transcription. The mutant lacks At2g37250 transcripts and has a mild reduction in total cellular ADK activity. Green fluorescent protein-fusion based cellular localization experiments, carried out with the full-length At2g37250, suggested a plastidial localization for this isoform. In keeping with this observation, organelle isolation experiments revealed that the loss in ADK activity was confined to the inner plastid. This plastid stroma ADK gene was found to be expressed tissue constitutively but at much higher levels in illuminated leaves. Phenotypic and biochemical analyses of the mutant revealed that it exhibited higher amino acid biosynthetic activity in the light and was characterized by an enhanced root growth. When the mutant was subjected to either continuous light or continuous dark, growth phenotypes were also observed in the shoots. While the levels of adenylates were not much altered in the leaves, the pattern of change observed in the roots was consistent with the inhibition of an ATP-consuming reaction. Taken together, these data suggest a role for the plastid stromal ADK in the coordination of metabolism and growth, but imply that the exact importance of this isoform is tissue dependent.
Erscheinungsjahr
Zeitschriftentitel
Plant Physiology
Band
137
Zeitschriftennummer
1
Seite
70-82
ISSN
eISSN
PUB-ID

Zitieren

Carrari F, Coll-Garcia D, Schauer N, et al. Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiology. 2005;137(1):70-82.
Carrari, F., Coll-Garcia, D., Schauer, N., Lytovchenko, A., Palacios-Rojas, N., Balbo, I., Rosso, M. G., et al. (2005). Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiology, 137(1), 70-82. doi:10.1104/pp.104.056143
Carrari, F., Coll-Garcia, D., Schauer, N., Lytovchenko, A., Palacios-Rojas, N., Balbo, I., Rosso, M. G., and Fernie, A. R. (2005). Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiology 137, 70-82.
Carrari, F., et al., 2005. Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiology, 137(1), p 70-82.
F. Carrari, et al., “Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth”, Plant Physiology, vol. 137, 2005, pp. 70-82.
Carrari, F., Coll-Garcia, D., Schauer, N., Lytovchenko, A., Palacios-Rojas, N., Balbo, I., Rosso, M.G., Fernie, A.R.: Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth. Plant Physiology. 137, 70-82 (2005).
Carrari, F., Coll-Garcia, D., Schauer, N., Lytovchenko, A., Palacios-Rojas, N., Balbo, I., Rosso, Mario G., and Fernie, A.R. “Deficiency of a plastidial adenylate kinase in Arabidopsis results in elevated photosynthetic amino acid biosynthesis and enhanced growth”. Plant Physiology 137.1 (2005): 70-82.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature.
Daher Z, Recorbet G, Solymosi K, Wienkoop S, Mounier A, Morandi D, Lherminier J, Wipf D, Dumas-Gaudot E, Schoefs B., Physiol Plant 159(1), 2017
PMID: 27558913
Arabidopsis Phosphatidic Acid Phosphohydrolases Are Essential for Growth under Nitrogen-Depleted Conditions.
Yoshitake Y, Sato R, Madoka Y, Ikeda K, Murakawa M, Suruga K, Sugiura D, Noguchi K, Ohta H, Shimojima M., Front Plant Sci 8(), 2017
PMID: 29163579
Molecular cloning, subcellular localization and characterization of two adenylate kinases from cassava, Manihot esculenta Crantz cv. KU50.
Boonrueng C, Tangpranomkorn S, Yazhisai U, Sirikantaramas S., J Plant Physiol 204(), 2016
PMID: 27518222
Impacts of high ATP supply from chloroplasts and mitochondria on the leaf metabolism of Arabidopsis thaliana.
Liang C, Zhang Y, Cheng S, Osorio S, Sun Y, Fernie AR, Cheung CY, Lim BL., Front Plant Sci 6(), 2015
PMID: 26579168
Wheat proteomics: proteome modulation and abiotic stress acclimation.
Komatsu S, Kamal AH, Hossain Z., Front Plant Sci 5(), 2014
PMID: 25538718
Starches--from current models to genetic engineering.
Sonnewald U, Kossmann J., Plant Biotechnol J 11(2), 2013
PMID: 23190212
A proteomic approach to analyze nitrogen- and cytokinin-responsive proteins in rice roots.
Ding C, You J, Wang S, Liu Z, Li G, Wang Q, Ding Y., Mol Biol Rep 39(2), 2012
PMID: 21607616
The central regulation of plant physiology by adenylates.
Geigenberger P, Riewe D, Fernie AR., Trends Plant Sci 15(2), 2010
PMID: 20005151
Tricarboxylic acid cycle activity regulates tomato root growth via effects on secondary cell wall production.
van der Merwe MJ, Osorio S, Araújo WL, Balbo I, Nunes-Nesi A, Maximova E, Carrari F, Bunik VI, Persson S, Fernie AR., Plant Physiol 153(2), 2010
PMID: 20118274
The activities of nucleoside diphosphate kinase and adenylate kinase are influenced by their interaction
Johansson Monika, Hammargren Jenni, Uppsäll Eva, MacKenzie Alasdair, Knorpp Carina., Plant Sci 174(2), 2008
PMID: IND44020335
Plastidial localization of a potato 'Nudix' hydrolase of ADP-glucose linked to starch biosynthesis.
Muñoz FJ, Baroja-Fernández E, Ovecka M, Li J, Mitsui T, Sesma MT, Montero M, Bahaji A, Ezquer I, Pozueta-Romero J., Plant Cell Physiol 49(11), 2008
PMID: 18801762
Operation and function of the tricarboxylic acid cycle in the illuminated leaf
Nunes-Nesi A, Sweetlove LJ, Fernie AR., Physiol Plant 129(1), 2007
PMID: IND43860523
Review: Transporters in starch synthesis
Martin T, Ludewig F., Functional plant biology : FPB. 34(6), 2007
PMID: IND43941825
The complex network of non-cellulosic carbohydrate metabolism.
Lytovchenko A, Sonnewald U, Fernie AR., Curr Opin Plant Biol 10(3), 2007
PMID: 17434793
Pyrimidine and purine biosynthesis and degradation in plants.
Zrenner R, Stitt M, Sonnewald U, Boldt R., Annu Rev Plant Biol 57(), 2006
PMID: 16669783
Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves.
Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR., Planta 221(6), 2005
PMID: 15744496
Identification and characterisation of the alpha and beta subunits of succinyl CoA ligase of tomato.
Studart-Guimarães C, Gibon Y, Frankel N, Wood CC, Zanor MI, Fernie AR, Carrari F., Plant Mol Biol 59(5), 2005
PMID: 16270230

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 15618410
PubMed | Europe PMC

Suchen in

Google Scholar