Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

Hoven CV, Wang H, Elbing M, Garner L, Winkelhaus D, Bazan GC (2010)
NATURE MATERIALS 9(3): 249-252.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers(1,2). Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.
Erscheinungsjahr
Zeitschriftentitel
NATURE MATERIALS
Band
9
Zeitschriftennummer
3
Seite
249-252
ISSN
eISSN
PUB-ID

Zitieren

Hoven CV, Wang H, Elbing M, Garner L, Winkelhaus D, Bazan GC. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. NATURE MATERIALS. 2010;9(3):249-252.
Hoven, C. V., Wang, H., Elbing, M., Garner, L., Winkelhaus, D., & Bazan, G. C. (2010). Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. NATURE MATERIALS, 9(3), 249-252. doi:10.1038/NMAT2623
Hoven, C. V., Wang, H., Elbing, M., Garner, L., Winkelhaus, D., and Bazan, G. C. (2010). Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. NATURE MATERIALS 9, 249-252.
Hoven, C.V., et al., 2010. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. NATURE MATERIALS, 9(3), p 249-252.
C.V. Hoven, et al., “Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation”, NATURE MATERIALS, vol. 9, 2010, pp. 249-252.
Hoven, C.V., Wang, H., Elbing, M., Garner, L., Winkelhaus, D., Bazan, G.C.: Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation. NATURE MATERIALS. 9, 249-252 (2010).
Hoven, Corey V., Wang, Huiping, Elbing, Mark, Garner, Logan, Winkelhaus, Daniel, and Bazan, Guillermo C. “Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation”. NATURE MATERIALS 9.3 (2010): 249-252.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices.
Ma D, Tsuboi T, Qiu Y, Duan L., Adv Mater 29(3), 2017
PMID: 27869353
Advance of Mechanically Controllable Break Junction for Molecular Electronics.
Wang L, Wang L, Zhang L, Xiang D., Top Curr Chem (Cham) 375(3), 2017
PMID: 28540580
Triarylborane-Based Materials for OLED Applications.
Turkoglu G, Cinar ME, Ozturk T., Molecules 22(9), 2017
PMID: 28902157
Light-Emitting Electrochemical Cells: A Review on Recent Progress.
Tang S, Edman L., Top Curr Chem (Cham) 374(4), 2016
PMID: 27573392
Bulk-Heterojunction Organic Solar Cells: Five Core Technologies for Their Commercialization.
Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K., Adv Mater 28(36), 2016
PMID: 27345936
Novel Organic Schottky Barrier Diode Created in a Single Planar Polymer Film.
Wang H, Hsu JH, Yang G, Yu C., Adv Mater 28(43), 2016
PMID: 27620845
Versatile Design Principles for Facile Access to Unstrained Conjugated Organoborane Macrocycles.
Chen P, Yin X, Baser-Kirazli N, Jäkle F., Angew Chem Int Ed Engl 54(37), 2015
PMID: 26119860
An imidazole functionalized pentameric thiophene displays different staining patterns in normal and malignant cells.
Magnusson K, Appelqvist H, Cieślar-Pobuda A, Bäck M, Kågedal B, Jonasson JA, Los MJ, Nilsson KP., Front Chem 3(), 2015
PMID: 26501054
Separation of electrical and optical energy gaps: selectively adjusting the electrical and optical properties for a highly efficient blue emitter.
Liu H, Chen P, Hu D, Tang X, Pan Y, Zhang H, Zhang W, Han X, Bai Q, Lu P, Ma Y., Chemistry 20(8), 2014
PMID: 24478181
Simple, fast, bright, and stable light sources.
Tordera D, Meier S, Lenes M, Costa RD, Ortí E, Sarfert W, Bolink HJ., Adv Mater 24(7), 2012
PMID: 22213577
Photochemical synthesis of a ladder diborole: a new boron-containing conjugate material.
Araneda JF, Neue B, Piers WE, Parvez M., Angew Chem Int Ed Engl 51(34), 2012
PMID: 22777828
Luminescent ionic transition-metal complexes for light-emitting electrochemical cells.
Costa RD, Ortí E, Bolink HJ, Monti F, Accorsi G, Armaroli N., Angew Chem Int Ed Engl 51(33), 2012
PMID: 22887710
Epitaxial growth of crystalline polyaniline on reduced graphene oxide.
Majumdar D, Baskey M, Saha SK., Macromol Rapid Commun 32(16), 2011
PMID: 21714028

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20118946
PubMed | Europe PMC

Suchen in

Google Scholar